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Abstract In this paper we develop a new unified approach to the so-called gener-
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1. Introduction
The basis which has come to be known as the Prometheus Orthonor-

mal Set (PONS) was introduced in [1] to prove the H.S. Shapiro global
uncertainty principle conjecture. Each function in PONS is called a
Golay-Shapiro sequence. They are defined on [0, 1], piecewise ±1 and
can change sign only at points of the form j/2n, j = 0, 1, . . . , 2n − 1,
n = 1, 2, . . .. These basis functions satisfy almost all standard proper-
ties of the Walsh functions. Discrete classical Fourier-Prometheus Trans-
forms (FPT) in bases of different Golay-Shapiro sequences can be used in
many signal processing applications: multiresolution by discrete orthog-
onal wavelet decomposition, digital audio, digital video broadcasting,
communication systems (Orthogonal Frequency Division Multiplexing,
Multi-Code Code-Division Multiple Access), radar, and cryptographic
systems.

Golay-Shapiro (GS) 2-complementary (±1)-valued sequences associ-
ated with the cyclic group Z2 were introduced by Shapiro and Golay
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in 1949–1951 [2]–[7]. In 1961, Golay [3] gave an explicit construction
for binary Golay complementary pairs of length 2m and later noted [4]
that the construction implies the existence of at least 2mm!/2 binary
Golay sequences of this length. They are known to exist for all lengths
N = 2α10β26γ , where α, β, γ are integers and α, β, γ ≥ 0 [8], but do
not exist for any length N having a prime factor congruent to 3 modulo
4 [9]. Budisin [10] using the earlier work of Sivaswamy [11], gave a
more general recursive construction for Golay complementary pairs and
showed that the set of all binary Golay complementary pairs of length 2m

obtainable from it concides with those given explicitly by Golay [3]. For
a survey of results on nonbinary Golay Complementary pairs, see [12]–
[13]. Recently, Davis and Jedwab [14], combining results appearing in
the work of Golay and Shapiro cited above, gave an explicit description
of a large class of Golay complementary sequences in terms of certain
cosets of the first order Reed-Muller codes. The following general ele-
ments are used for building the classical Fourier-Prometheus transforms
in bases of classical Golay-Shapiro sequences: 1) the Abelian group Zn

2 ,
2) the 2-point Fourier transform F2, and 3) the complex field C; i.e.,
these transforms are associated with the triple (Zn

2 ,F2,C).
The multiresolution analysis (MRA) operates upon a discrete signal

x(l) of length 2n, where n is an integer. The sequence x(l) is convolved
with two filters L and H. Each convolution results in a sequence half the
length of the original sequence. The result from the convolution with
the low-pass filter is again transformed. Each re-transformed sequence
of the low-pass output is referred to as a dilation. For a sequence x(l) of
length 2n, a maximum of n dilations can be performed. MRA applied
to a real-valued sequence x(l) is defined recursively by the equations:

c(p)(l) = L
{

c(p−1)(l)
}

, d(p) = H
{
c(p−1)(l)

}
,

where p = n, n − 1, . . . , 1, 0, cn(l) = x(l), and

c(l) = (Lx)(l) =
2n−1∑
l=0

klp(l − 2k)x(l),

d(l) = (Hx)(l) =
2n−1∑
l=0

khp(l − 2k)x(l)

are low-pass and high-pass filters, respectively.
The sequences c(p)(l) and d(p)(l) are called the “averages” and “dif-

ferences” of the original signal. The inverse discrete wavelet transform
reconstructs c(n)(l) = x(l) using the recursive algorithm

c(p+1)(l) = L∗{c(p)(l)} + H∗{d(p)(l)},
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where L∗ and H∗ are the inverse filters of L and H, respectively. All fil-
ters L, H, and L∗, H∗, satisfy the following equation LL∗ = I, HH∗ =
I, and

LL∗ + HH∗ = 2I, LH∗ = H∗L = 0, (1)

where I and 0 denote the identity and zero operators. Note that a pair of
filters having these properties required of the transformations L and H
are known as quadrature mirror filters, having the perfect reconstruction
property.

The conditions (1) can be rewritten in terms of the Z-transform as

|klp(z)|2 + |khp(z)|2 = 2, klp(z)klp(−z)+ khp(z)khp(−z) = 0, ∀z ∈ T1

where T1 is the unit circle of the complex field C. These conditions mean
that impulse responses klp(l) and khp(l) form a Golay-Shapiro (GS) 2-
complementary pair.

In this paper we develop a new unified approach to the so-called
generalized Fourier-Clifford-Prometheus (FCP) sequences, FCP trans-
forms (FCPTs), and M-channel Filter Banks. We describe the precise
theoretical and computational relationship between M -band wavelets,
M -channel filterbanks and generalized Golay-Shapiro sequences. The
approach is based on a new generalized FCPT-generating construction.
This construction has a rich algebraic structure that supports a wide
range of fast algorithms. This construction is associated not with the
triple

(
Zn

2 ,F2,C
)
, but rather with other groups instead of Zn

2 , other
unitary transforms instead of F2, and other algebras (Clifford algebras)
instead of the complex field C.

2. New construction of classical and
multiparametric Prometheus transforms

We begin by describing the original Golay 2-complementary (±1)-
valued sequences.

Definition 1 Let p(t) := (p0, p1, . . . , pN−1), q(t) := (q0, q1, . . . , qN−1),
where pi, qi ∈ {±1}. The sequences p(t),q(t) are called a 2-complemen-
tary (±1)-valued or Golay complementary pair over {±1} if

COR[p,p](τ) + COR[q,q](τ) = Nδ(τ),

or
|p(z)|2 + |q(z)|2 = N, ∀z ∈ T1,

where COR[f , f ](τ) is the periodic correlation function of f(t); p(z) and
q(z) are Z-transforms of p(t) and q(t), respectively. Any sequence which
is a member of a Golay complementary pair is called a Golay sequence.
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The Fourier-Prometheus matrix of depth n has size 2n × 2n : FP2n =
[Prα(t)]2

n−1
α,t=0. For α and t we shall use binary representations α = α[n] :=

(α1, α2, . . . , αn), t = t[n] := (t1, t2, . . . , tn), where αi, ti ∈ {0, 1}, i =
1, 2, . . . , n. Obviously, α[1] = (α1), α[2] = (α1, α2), α[3] = (α1, α2, α3), . . .
t[1] = (t1), t[2] = (t1, t2), t[n] = (t1, t2, . . . , tn), . . . . For this reason,

2n
FP(α[n−1],αn) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pr(0,0,...,0,0)(t1, . . . , tn)
Pr(0,0,...,0,1)(t1, . . . , tn)
Pr(0,0,...,1,0)(t1, . . . , tn)
Pr(0,0,...,1,1)(t1, . . . , tn)
. . .
. . .
Pr(1,1,...,1,0(t1, . . . , tn)
Pr(1,1,...,1,1(t1, . . . , tn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=�2n−1−1

α[n−1]=0

[
Pr(α[n−1],0)(t)
Pr(α[n−1],1)(t)

]
,

where Pr(α[n−1],0)(t) and Pr(α[n−1],1)(t) are a pair of GS 2-complementary
sequences and � represents the vertical concatenation of matrices.

The classical matrix FP2n is formed by starting with the (2 × 2)-

matrix 21
FP =

[
Pr0(t)
Pr1(t)

]
=
[

1 1
1 −1

]
and by repeated application

of the PONS-iteration construction to pairs of rows in the matrix.

In the (n + 1)st iteration this construction takes each pair
[

p
q

]
=[

Pr(α[n−1],0)(t)
Pr(α[n−1],1)(t)

]
of

2n
FP(α[n−1],αn) = �2n−1−1

α[n−1]=0

[
Pr(α[n−1],0)(t)
Pr(α[n−1],1)(t)

]

and constructs four rows of twice the length

PONS(p,q) =

⎡
⎢⎢⎣

p q
p −q
q p

−q −p

⎤
⎥⎥⎦ =

[
p q
p −q

]
�
[

q p
−q −p

]

=
([

1 1
1 −1

] [
p

q

])
�
([

1 1
1 −1

] [
p

q

])

=
([

1 1
1 −1

] [
p

q

] [
1

1

])
�
([

1 1
1 −1

] [
p

q

] [
1

1

])

=
(

F2

[
p

q

]
T 0

2

)
�
(

F2

[
p

q

]
T 1

2

)
,
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where {Tα1}1
α1=0 are dyadic shifts. Using this construction for all 2k−2

complementary pairs (α[k−2] = 0, 1, . . . , 2k−2 − 1), we obtain

2n+1
FP(α[n],αn+1) = �2n−1

α[n]=0

(
F2

[
p

q

]
Tαn

2

)

= �2n−1

α[n]=0

(
F2

[
Pr(α[n−1],0)(t)

Pr(α[n−1],1)(t)

]
Tαn

2

)
. (2)

Repetition of this construction yields the Fourier-Prometheus matrix
2n+1

FP of size 2n+1 × 2n+1.
Our new PONS construction uses in (2) three parametric unitary

matrices

U2(β, ϕ, γ) =
[

ei(β+γ) cos ϕ ei(β−γ) sin ϕ

e−i(β−γ) sinϕ −e−i(β+γ) cos ϕ

]

instead of F2 :

2n+1
FP(α[n],αn+1)(�βn+1, �ϕn+1, �γn+1) = �2n−1

α[n]=0

(
U(βn+1, ϕn+1, γn+1)

∗
[

Pr(α[n−1],0)(t|�βn, �ϕn, �γn)
Pr(α[n−1],1)(t|�βn, �ϕn, �γn)

]
Tαk

2

)
, (3)

where

�βn+1 = (β1, . . . , βn+1), �ϕn+1 = (ϕ1, . . . , ϕn+1), �γn+1 = (γ1, . . . , γn+1)

are three (n + 1)D vectors of parameters. Extra parameters βk, ϕk, γk

(k = 1, 2, . . . , n + 1) are changed from stage to stage in this construc-
tion. The resulting matrix still has orthogonal rows and every pair is
2-complementary in the Golay-Shapiro sense.

3. PONS associated with Abelian groups

3.1 Abelian groups Z�
�

A natural generalization of a 2-complementary Golay pair is an N -
complementary Golay N -member orthogonal set of Clifford-valued se-
quences p0(t), ..., pN−1(t), where t = 0, 1, ..., Nn − 1.

Definition 2 Let p0(t),p1(t), . . . ,pN−1(t) be an N -member orthogo-
nal set of Clifford-valued sequences, where pi(t) ∈ {εk

N}N−1
k=0 , εN :=
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e2πu/N ∈ Cla, Cla is a Clifford algebra, and u is an appropriate bivec-
tor with the property u2 = −1. The sequences {pi(t)}N−1

i=0 are called
N-complementary {εk

N}N−1
k=0 -valued sequences of length Nn if

COR[p0,p0](τ) + . . . + COR[pN−1,pN−1](τ) = Nnδ(τ),

or |p0(z)|2 + |p1(z)|2 + . . . + |pN−1(z)|2 = Nn, ∀z ∈ T1, where pi(z)
are Z-transforms of pi(t), i = 0, 1, . . . , N − 1, respectively.

Let, for example, N = 3. Then for the group Z3 we define the Fourier-
Clifford-Prometheus transform as the Fourier-Clifford transform

31
FCP := 31

FC =

⎡
⎣ Pr0(t)

Pr1(t)
Pr2(t)

⎤
⎦ =

⎡
⎣ 1 1 1

1 ε3 ε2
3

1 ε2
3 ε3

⎤
⎦ .

For the group Z2
3 we define the Fourier-Clifford-Prometheus transform

using the classical PONS-construction (2) by

32
FCPα1,α2 = �2

α1=0

⎛
⎝FC3

⎡
⎣ Pr0(t)

Pr1(t)
Pr2(t)

⎤
⎦Tα1

3

⎞
⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 ε3 ε2

3

1 ε2
3 ε3

1 1 1
1 ε3 ε2

3
1 ε2

3 ε3

1 1 1
1 ε3 ε2

3

1 ε2
3 ε3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 ε3 ε2

3

1 ε2
3 ε3

1 1 1
1 ε3 ε2

3
1 ε2

3 ε3

1 1 1
1 ε3 ε2

3

1 ε2
3 ε3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 ε3 ε2
3 1 ε2

3 ε3

1 1 1 ε3 ε2
3 1 ε2

3 ε3 1
1 1 1 ε2

3 1 ε3 ε3 1 ε2
3

1 ε2
3 ε3 1 1 1 1 ε3 ε2

3

ε2
3 ε3 1 1 1 1 ε3 ε2

3 1
ε3 1 ε2

3 1 1 1 ε2
3 1 ε3

1 ε3 ε2
3 1 ε2

3 ε3 1 1 1
ε3 ε2

3 1 ε2
3 ε3 1 1 1 1

ε2
3 1 ε3 ε3 1 ε2

3 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Pr(0,0)(t)
Pr(0,1)(t)
Pr(0,2)(t)
Pr(1,0)(t)
Pr(1,1)(t)
Pr(1,2)(t)
Pr(2,0)(t)
Pr(2,1)(t)
Pr(2,2)(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where {Tα1}2
α1=0 are 3-cyclic shift operators. After n + 1 iterations we

obtain the following Fourier-Clifford-Prometheus transform on the group
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Zn+1
3 :

3n+1
FCP(α[n],αn+1) = �3n−1

α[n]=0

(
FC3

∗

⎡
⎢⎣

Pr(α[n−1],0)(t)
Pr(α[n−1],1)(t)

Pr(α[n−1],2)(t)

⎤
⎥⎦Tαn

3

)
.

The same expression is true for the Fourier-Clifford-Prometheus trans-
form on the group Zn

N :

Nn+1
FCP(α[n],αn+1) = �N [n]−1

α[n]=0

(
FCN

∗

⎡
⎢⎢⎢⎣

Pr(α[n−1],0)(t)
Pr(α[n−1],1)(t)

. . .
Pr(α[n−1],N−1)(t)

⎤
⎥⎥⎥⎦Tαn

N

)
,

where FCN is the Fourier-Clifford transform on the group ZN ,

{Tα1}N−1
α1=0

are N -cyclic shift operators.

3.2 Abelian groups Z�1 ⊕ Z�2 ⊕ . . . ⊕ Z��

Let ZN1 ⊕ZN2 ⊕ . . .⊕ZNn be an Abelian group, where N1, N2, . . . , Nn

are positive integers. The classical Fourier-Prometheus transforms are
generated by the Fourier-Walsh transform F2 and by dyadic shifts. Fou-
rier-Clifford-Prometheus transforms associated with Zn

N are generated
by the Fourier-Clifford transform FCN of the group ZN and by N -ary
shifts. We shall generate new Fourier-Clifford-Prometheus transforms
associated with Abelian groups ZN1 ⊕ ZN2 ⊕ . . . ⊕ ZNn ⊕ ZNn+1 by us-
ing the set of Fourier-Clifford transforms FCN1 ,FCN2, . . . ,FCNn ,FCNn+1 .
For example, the group Z2⊕Z3⊕Z4 requires three Fourier-Clifford trans-
forms

F2 =
[

1 1
1 −1

]
, F3 =

⎡
⎣ 1 1 1

1 ε3 ε2
3

1 ε2
3 ε3

⎤
⎦ , F4 =

⎡
⎢⎢⎣

1 1 1 1
1 ε1

4 ε2
4 ε3

4

1 ε2
4 1 ε2

4
1 ε3

4 ε2
4 ε1

4

⎤
⎥⎥⎦ .
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Let us consider the group Z2 ⊕ Z3. FCP2 = FC2 =
[

Pr0(t)
Pr1(t)

]
=[

1 1
1 −1

]
. We define the Fourier-Clifford-Prometheus transform asso-

ciated with the Abelian group Z2 ⊕ Z3 by using the classical PONS
construction

2·3FCP(α1,α2)

= �1
α1=0

⎛
⎝FC3

⎡
⎣ Pr〈(α1,0)〉2(t)

Pr〈(α1,1)〉2(t)
Pr〈(α1,2)〉2(t)

⎤
⎦Tα1

3

⎞
⎠ ,

where 〈(α1, β2)〉2 := (α1, β2) mod 2. Therefore,

FCP2·3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 ε3 ε2

3

1 ε2
3 ε3

1 1 1
1 ε3 ε2

3
1 ε2

3 ε3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
1 −1

1 1
1 1

1 −1
1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 −1 1 1
1 1 ε3 ε3 ε2

3 ε2
3

1 1 ε3 −ε3 ε2
3 ε2

3

1 −1 1 1 1 −1
ε2
3 −ε2

3 1 1 ε3 −ε3

ε3 −ε3 1 1 ε2
3 −ε2

3

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Pr(0,0)(t)
Pr(0,1)(t)
Pr(0,2)(t)
Pr(1,0)(t)
Pr(1,1)(t)
Pr(1,2)(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

We design Fourier-Clifford-Prometheus transforms associated with
the Abelian groups ZN1 ⊕ZN2 ⊕ . . .⊕ZNn+1 by the same classical PONS
construction

N [n+1]
FCP(α[n]αn+1)

= �N [n]−1

α[n]=0

⎛
⎜⎝FCNn+1

⎡
⎢⎣

Pr(α[n−1],〈0〉Nn )

. . .
Pr(α(n−1),〈Nn+1−1〉Nn )

⎤
⎥⎦Tαn

Nn+1

⎞
⎟⎠

where FNn+1 is the Fourier-Clifford transform on the group ZNn+1, 〈αn +
βn+1〉n+1 := (αn + βn+1) mod Nn+1, α[n] := (α1, α2, . . . , αn), N [n] :=
N1N2 · · ·Nn, (α[n], βn+1) := (α1, . . . , αn, βn+1), and, hence,

〈(α[n], βn+1)〉n := (α1, . . . , αn, βn+1) mod Nn.
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4. Fast Fourier-Prometheus Transforms

4.1 Radix-2 Fast Transforms
Let us return to the Fourier-Clifford-Prometheus transform

FP22 =

⎡
⎢⎢⎣

Pr(0,0)(t)
Pr(0,1)(t)
Pr(1,0)(t)
Pr(1,1)(t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1
1

1
−1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1

1
1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1

1
−1

⎤
⎥⎥⎦

= ∆0Π4(F2 ⊗ F2)∆0, (5)

where ∆0 := diag(Pr0(t)) = diag(Prα(0)) is a diagonal matrix and
Π4 is a special permutation matrix. From this expression we see that
Prometheus functions up to constant factor are modulated Walsh func-
tions:

Pr’(α1,α2)(t1, t2) = (−1)α1α2

[
Wal(α1,α2)(t1, t2)(−1)t1t2

]
,

where (−1)α1α2 and (−1)t1t2 are the so-called Shapiro multipliers, and
Wal(α1,α1)(t1, t2) = (−1)α1t1⊕2α2t2 . The same result is true in the gen-
eral case for the Fourier-Clifford-Prometheus (2n×2n)-transform FP2n =
∆0Π2n(F2⊗F2⊗· · ·⊗F2)∆0, where Π2n is a special permutation matrix
and ∆0 =diag(Pr0(t))=diag(Prα(0)) is the diagonal matrix whose diag-
onal elements form the Shapiro (±1)-multipliers. If α = (α1, α2, . . . , αn)
is the binary representation of the number in the αth row of ∆0, where
αi ∈ Z2, then for diagonal elements ∆α,α we have the expression ∆α,α =
(−1)

�n−1
i=1 αiαi+1 . The quantity b(α) =

∑n−1
i=1 αiαi+1 is the number of

occurrences of the block B = (11) in the binary representation of α,
(α1, α2, . . . , αn). For this reason the Fourier-Clifford-Prometheus trans-
form has the Cooley-Tukey fast algorithm

FP2n = ∆0Π2n

[
CT 1

2nCT 2
2n · · ·CT n

2n

]
∆0, (6)

where CT i
2n := I2 ⊗ . . .⊗F2⊗ . . .⊗ I2 for i = 1, 2, . . . , n are the so-called

Cooley-Tukey sparse matrices.
Now we can prove that an analogous result is true for Davis-Jedwab

Clifford-valued sequences. Let MC2h = {εk
2h}2h−1

k=0 be the multiplicative
cyclic group of 2hth roots of unity and ε2h be a 2hth primitive root in a
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Clifford algebra Cla. Let (c1, c2, . . . , cn) ∈ Zn
2h = Z2h ⊕ Z2h ⊕ . . . ⊕ Z2h ,

be an nD vector of parameters over Z2h , where Zn
2h is a set of nD vectors

(labels). Let

FC2(ε
ck

2h) :=
[

1 εck

2h

1 −εck

2h

]
=
[

1 1
1 −1

] [
1

εck

2h

]
, k = 1, 2, . . . , n,

(7)
be a set of (2 × 2)-matrices. Then the tensor product of these matrices

FCPDJ
(c1,c2,...,cn)
2n := ∆0Π2n

(
F2(εc1

2h) ⊗ F2(εc2
2h) ⊗ · · · ⊗ F2(εcn

2h)
)
∆0 (8)

gives us new multi-parametric Fourier-Prometheus transforms with fast
Cooley-Tukey algorithm:

FCPDJ
(c1,c2,...,cn)
2n = ∆0Π2n

[
CT 1

2n(εc1
2h)CT 2

2n(εc2
2h) · · ·CT n

2n(εcn

2h)
]
∆0, (9)

where CT k
2n(εck

2h) :=
[
I2 ⊗ . . . ⊗ F2(ε

ck

2h) ⊗ . . . ⊗ I2

]
, and k = 1, 2, . . . , n.

4.2 Radix-N Fourier-Prometheus transforms
Let us consider the case of Z2

3. In this case FCP32 = ∆0Π9(F3⊗F3)∆0,
where ∆0 = diag{Pr(0,0)(t1, t2)} = diag{Pr(t1,t2)(0, 0)} and Π9 is a spe-
cial permutation matrix. From this expression we see that Prometheus
functions up to constant factor are modulated Chrestenson-Clifford se-
quences (i.e., Clifford-valued characters of the group Z2

3):

Pr’(α1,α2)(t1, t2) = Pr(α1,α2)(0, 0)
[
Ch(α1,α2)(t1, t2) · Pr(0,0)(t1, t2)

]

= εα1α2
3

[
Ch(α1,α2)(t1, t2)ε

t1t2
3

]
= εα1α2

3

[
εα1t1⊕2α2t2
3 · εt1t2

3

]
,

where
Pr(α1,α2)(0, 0) = εα1α2

3

Pr(0,0)(t1, t2) = εt1t2
3 ,

and
Ch(α1,α1)(t1, t2) = εα1t1⊕2α2t2

3 .

For this reason, this Fourier-Clifford Prometheus transform has the Coo-
ley-Tukey fast algorithm FP32 = ∆0Π9

[
CT 1

9 · CT 2
9

]
∆0, where CT 1

9 :=

F3 ⊗ I3, CT 2
9 = I3 ⊗ F3. The same result is true in the general case for

Fourier-Clifford-Prometheus (3n × 3n)-transforms

FP3n =∆0Π3n

(
F3 ⊗F3 ⊗ · · · ⊗ F3

)
∆0 =∆0Π3n

[
CT 1

3nCT 2
3n · · ·CT n

3n

]
∆0,
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where CT i
3n := I3 ⊗ . . .⊗F3⊗ . . .⊗ I3 for i = 1, 2, . . . , n are the so-called

Cooley-Tukey sparse matrices. Now we are ready to write the analogous
expression for Fourier-Clifford-Prometheus (Nn × Nn)-transforms

FPNn = ∆0ΠNn

(
FN ⊗ FN ⊗ · · · ⊗ FN

)
∆0

= ∆0ΠNn

[
CT 1

NnCT 2
Nn · · ·CT n

Nn

]
∆0, (10)

where CT i
Nn := IN ⊗ . . . ⊗ FN ⊗ . . . ⊗ IN for i = 1, 2, . . . , n are the

so-called Cooley-Tukey sparse matrices. The same result is true in the
general case for the Fourier-Clifford-Prometheus (N [n]×N [n])-transform

FPN [n] = ∆0ΠNn

(
FN1 ⊗ FN2 ⊗ · · · ⊗ FNn

)
∆0

= ∆0ΠNn

[
CT 1

N [n]CT 2
N [n] · · ·CT n

N [n]

]
∆0, (11)

where ∆0 := diag(Pr0(t)) = diag(Prα(0)) is a diagonal matrix and
ΠNn a permutation matrix, and CT i

N [n] := IN1 ⊗ . . . ⊗ FNi ⊗ . . . ⊗ INn

for i = 1, 2, . . . , n are the so-called Cooley-Tukey sparse matrices.

5. Conclusions
We have shown how Clifford algebras can be used to formulate a new

unified approach to so-called generalized Fourier-Clifford-Prometheus
transforms. It is based on a new generalized FCPT-generating con-
struction. This construction has a rich algebraic structure that supports
a wide range of fast algorithms. This construction is associated not with
the triple

(
Zn

2 ,F2,C
)
, but rather with other groups instead of Zn

2 , other
unitary transforms instead of F2, and other algebras (Clifford algebras)
instead of the complex field C.
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