
INTRODUCTION TO GENERALIZED
CLASSICAL AND QUANTUM
SIGNAL AND SYSTEM THEORIES
ON GROUPS AND HYPERGROUPS

Valeriy Labunets
Urals State Tecnical University
Ekaterinburg, Russia

lab@rtf.ustu.ru

“Look,” they say, “here is something new!” But no, it has all happened before,
long before we have were born.

—Good News Bible, Eccl.1:10

Abstract In this paper we develop two topics in parallel and show their inter-
and crossrelation. The first centers on general notions of the classical
signal/system theory on finite Abelian hypergroups. The second con-
cerns the quantum hyperharmonic analysis of quantum signals (Her-
mitean operators associated with classical signals). We study classical
and quantum generalized convolution hypergroup algebras of classical
and quantum signals.

Keywords: classical and quantum signals/systems, classical and quantum Fourier
transforms, Clifford algebra, hypergroups.

Introduction

The main F.Klein idea of the “Erlangen Program” lies in the corre-
spondence of some group to a certain geometry. Thus, a group is the
first (basic) notion of geometry and group can be interpreted as some
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group of symmetries for the geometry. So, in general, every group of
transformations (symmetries) determines its own geometry under the
F.Klein correspondence GEO = f(GROUP). Quantum signal theory
is a term referring to a collection of ideas and partial results, loosely
held together, which assumes that there are deep connections between
the worlds of quantum physics and classical signal/system theory, and
that one should try to discover and develop these connections. The gen-
eral topic of this paper is the following idea. If some algebraic structures
arise together in quantum theory and classical signal/system theory in
the same context, then one should try to make sense of this for more
generalized algebraic structures. Here, the point is not to try to de-
velop alternative theories as substitute models for quantum physics and
signal/system theory, but rather to develop a “β-version” of a unified
scheme of general classical and quantum signal/system theory based on
the F.Klein “Erlangen Program”. It is known that general building ele-
ments of the Classical and Quantum Signal/System Theories (Cl -SST
and Qu-SST) are the following: 1) the Abelian group of real numbers
AR, 2) the classical Fourier transform F, and 3) the complex field C,
i.e., these theories are associated with the triple 〈〈AR,F,C〉〉. Following
F.Klein, we can write

Cl−SST = fcl

(
〈〈AR,F,C〉〉

)
, Qu−SST = fqu

(
〈〈AR,F,C〉〉

)

for any F.Klein correspondences fcl and fqu, respectively. These cor-
respondences mean that every triple 〈〈AR,F,C〉〉 determines certain
theories Cl−SST and Qu−SST. In this paper we develop a new uni-
fied approach to the Generalized Classical and Quantum Signal/System
Theories (GCl -SST and GQu-SST). They are based not on the triple
〈〈AR,F,C〉〉, but rather on other Abelian groups and hypergroups, on a
large class of orthogonal and unitary transforms (instead of the classical
Fourier transform), and involve other fields, rings and algebras (triplet
color algebra, multiplet multicolor algebra, hypercomplex commutative
algebras, Clifford algebras). In our approach, Generalized Classical and
Quantum Signal/System Theories are two functions (correspondences)
of a new triple:

GCl−SST = fcl

(
〈〈HG,F,A〉〉

)
, GQu−SST = fqu

(
〈〈HG,F,A〉〉

)
,

where HG is a hypergroup, F is a unitary transform, and A is an algebra.
When the triple 〈〈HG,F,A〉〉 is changed the theories GCl−SST and
GQu−SST are changed too. For example, if F is the classical Fourier
transform, HG is the group of real numbers R and A is the complex field
C, then 〈〈R,F,C〉〉 describes free quantum particles. If F is the classical
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Walsh transform (CWT), HG is an abelian dyadic group Zn
2 and A is the

complex field C, then 〈〈Zn
2 ,CWT,A〉〉 describes n-digital quantum reg-

isters. If F is the classical Vilenkin transform (CVT), HG is an abelian
m-adic group Zn

m and A is the complex field C, then 〈〈Zn
m,CWT,C〉〉

describes n-digital quantum m-adic registers and so on. Every triple
generates a wide class of classical and quantum signal processing meth-
ods. We develop these two topics in parallel and show their inter- and
crossrelation. We study classical and quantum generalized convolution
hypergroup algebras of signals and Hermitian operators. One of the
main purposes of this paper is to demonstrate parallelism between the
generalized classical hyperharmonic analysis and the generalized quan-
tum hyperharmonic analysis.

1. Generalized classical signal/system theory on
hypergroups

1.1 Generalized shift operators

The integral transforms and the signal representation associated with
them are important concepts in applied mathematics and in signal the-
ory. The Fourier transform is certainly the best known of the integral
transforms and, with the Laplace transform, is also the most useful.
Since its introduction by Fourier in the early 1800s, it has found use in
innumerable applications. However, the Fourier transform is just one of
many ways of signal representation, there are many other transforms of
interest. An important aspect of many of these representations is the
possibility to extract relevant information from a signal: the informa-
tion that is actually present but hidden in its complex representation.
But these transformations are not efficient analysis tools compared to
the ordinary Fourier representation, since the latter is based on such
useful and powerful tools of signal theory as linear and nonlinear convo-
lutions, classical and higher-order correlations, invariance with respect
to shift, ambiguity and Wigner distributions, etc. The other integral
representations have no such tools. The ordinary group shift operators
(T τ

t x)(t) := x(t⊕ τ) play the leading role in all the properties and tools
of the Fourier transform mentioned above. In order to develop for each
orthogonal transform a similar wide set of tools and properties as the
Fourier transform has, we associate a family of generalized commutative
shift operators with each orthogonal transform. Such families form com-
mutative hypergroups. Only in particular cases are these hypergroups
well-known Abelian groups. In 1934 F. Marty [1, 2] and H.S. Wall

[3, 4] independently introduced the notion of hypergroup.
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Let f(x) : Ω −→ A be an A-valued signal, where A is an algebra.
Usually, Ω = Rn × T, or Ω = Zn × T, where Rn, Zn and Zn

N are nD
vector spaces over R, Z and ZN , respectively, T is a compact (temporal)
subset of R, Z, or ZN . Here, R, Z and ZN are the real field, the ring
of integers, and the ring of integers modulo N, respectively. Let Ω∗ be
the space dual to Ω. The first one will be called the spectral domain,
the second one is called the signal domain keeping the original notion of
x ∈ Ω as “time” and ω ∈ Ω∗ as “frequency”. Let

Sig0 = L(Ω,A) := {f(x)| f(x) : Ω −→ A} ,

Sp0 := L(Ω∗,A) := {F (ω)|F (ω) : Ω∗ −→ A}
be two vector spaces of A-valued functions. In the following we assume
that the functions satisfy certain general properties so that pathological
cases where formulas would not hold are avoided. Let {ϕω(x)}ω∈ω∗

be an orthonormal system of functions of Sig0. Then for any function
f(x) ∈ Sig0 there exists a function F (ω) ∈ Sp0 for which the following
equations hold:

F (ω) = CF{f}(ω) :=

∫

x∈Ω
f(x)ϕ̄ω(x)dµ(x), (1)

f(x) = CF−1{F}(x) :=

∫

ω∈Ω∗

F (ω)ϕω(t)dµ(ω), (2)

where µ(x), µ(ω) are certain suitable measures on the signal and spectral
domains, respectively. The function F (ω) is called the CF-spectrum of a
signal f(x) and expressions (1) and (2) are called the pair of generalized
classical Fourier transforms (or CF-transforms). In the following we
will use the notation f(x) ←→��� F (ω) in order to indicate CF-transform

pairs. Along with the “time” and “frequency” domains we will work with
“time-time” Ω×Ω, “time-frequency” Ω×Ω∗, “frequency-time” Ω∗×Ω,
and “frequency-frequency” Ω∗×Ω∗ domains, and with four distributions,
which are denoted by double letters ff(x, v) ∈ L2(Ω × Ω,A), Ff(ω, v) ∈
L2(Ω

∗×Ω,A), fF(x, ν) ∈ L2(Ω×Ω∗,A), and FF(ω, ν) ∈ L2(Ω
∗×Ω,A).

The classical shift operators in the “time” and “frequency” domains
are defined as (T̂ v

x f)(x) := f(x+ v), (D̂ν
ωF )(ω) := F (ω+ ν). For f(x) =

ejωx and F (ω) = e−jωx, we have T̂ v
x e

jωx = ejω(x+v) = ejωvejωx, and

D̂ν
ωe
−jωx = e−j(ω+ν)x = e−jνxe−jωx, i.e., functions ejωx, e−jωx are eigen-

functions of “time”-shift and “frequency”-shift operators T̂ v
x and D̂ν

ω

corresponding to eigenvalues λv = ejωv and λν = e−jνx respectively. We
now generalize this result.
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Definition 1 The operators

(T̂ v
xϕω)(x) = ϕω(x)ϕω(v), (T̂ v̄

xϕω)(x) = ϕω(x)ϕ̄ω(v), (3)

(D̂ν
ωϕ̄ω)(x)= ϕ̄ω(x)ϕ̄ν(x), (D̂ν̄

ωϕ̄ω)(x)= ϕ̄ω(x)ϕν(x). (4)

are called the generalized commutative “time” and “frequency”-shift op-
erators (GSOs) respectively.

It is known [5, 6] that two families of time GSOs {T̂ v
x }v∈Ω and frequency

GSOs {D̂ν
ω}ν∈Ω∗ form two commutative hypergroups. By definition,

functions ϕω(x) are eigenfunctions of GSOs: T̂ v
xϕω(x) = ϕω(v)ϕω(x),

D̂ν
ωϕ̄ω(x) = ϕ̄ν(x)ϕ̄ω(x). For this reason, we can call them the hyperchar-

acters of the hypergroup. The idea of a hypercharacter on a hypergroup
encompasses characters of locally compact and finite Abelian groups and
multiplication formulas for classical orthogonal polynomials. The the-
ory of GSOs was initiated by Levitan [5, 6] and (in the terminology of
hypergroup) by Duncl [7] and Jewett [8]. The class of commutative
generalized translation hypergroups includes the class of locally com-
pact and finite Abelian groups and semigroups. The theory for these
hypergroups looks much like locally compact and finite Abelian group
theory. We will show that many well-known harmonic analysis theo-
rems extend to the commutative hypergroups associated with arbitrary
Fourier transforms.

For a signal f(x) ∈ Sig0 we define its shifted copy by

T̂ v
xf(x) := f(x� v) = T̂ v

x



∫

ω∈Ω∗

F (ω)ϕω(x)dµ(ω)


 =

∫

ω∈Ω∗

F (ω)T̂ v
x

(
ϕω

)
(x)dµ(ω) =

∫

ω∈Ω∗

[F (ω)ϕω(v)]ϕω(x)dµ(ω).

Analogously,

T̂ v̄
xf(x) := f(x� v) =

∫

ω∈Ω∗

[F (ω)ϕ̄ω(v)]ϕω(x)dµ(ω),

D̂ν
ωF (ω) := F (ω ⊕ ν) =

∫

x∈Ω

[f(x)ϕ̄ν(x)]ϕ̄ω(x)dµ(x),

D̂ν̄
ωF (ω) := F (ω 	 ν) =

∫

x∈Ω

[f(x)ϕν(x)]ϕ̄ω(x)dµ(x).
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Here symbols �,⊕ and �,	 are the quasisums and quasidifferences,
respectively. Obviously

ϕω(x� v) = ϕω(x)ϕω(v), ϕω(x� v) = ϕω(x)ϕω(v),

and

ϕω⊕ν(x) = ϕω(x)ϕν(x), ϕω	ν(x) = ϕω(x)ϕν(x).

We will need the following modulation operators:

(M̂ν
x f)(x) := ϕν(x)f(x), (M̂v

ωF )ω := ϕω(v)F (ω).

(M̂ ν̄
x f)(x) := ϕ̄ν(x)f(x), (M̂ v̄

ωF )ω := ϕ̄ω(v)F (ω).

From the GSOs definition we have:

Theorem 1 Shifts and modulations are connected as follows:

T̂ v
x f(x) = f(x� v) ←→� � F (ω)ϕω(v) = M̂v

ωF (ω),

T̂ v̄
x f(x) = f(x� v) ←→� � F (ω)ϕ̄ω(v) = M̂ v̄

ωF (ω),

M̂ν
x f(x) = f(x)ϕ̄ν(x) ←→��� F (ω ⊕ ν) = D̂ν

ωF (ω),

M̂ν
x f(x) = f(x)ϕν(x) ←→��� F (ω 	 ν) = D̂ν̄

ωF (ω),

i.e.,

CF{T̂ v
x }CF−1 = M̂v

ω, CF{M̂ν
x }CF−1 = D̂ν̄

ω, (5)

CF{T̂ v̄
x }CF−1 = M̂ v̄

ω, CF{M̂ ν̄
x }CF−1 = D̂ν̄

ω, (6)

CF−1{D̂ν
ω}CF = M̂ ν̄

x , CF−1{M̂v
ω}CF = T̂ v

x , (7)

CF−1{D̂ν̄
ω}CF = M̂ν

x , CF−1{M̂ v̄
ω}CF0 = T̂ v̄

x . (8)

The operators are noncommutative because

M̂ν
x T̂

v
x = ϕ̄ν(v)T̂

v
x M̂

ν
x , T̂ v

xM̂
ν
x = ϕν(v)M̂

ν
x T̂

v
x ,

M̂v
ωD̂

ν
ω = ϕ̄ν(v)D̂ν

ωM̂
v
ω, D̂ν

ωM̂
v
ω = ϕν(v)M̂

v
ωD̂

ν
ω.
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1.2 Some popular examples of GSOs

Example 1 In this example we consider GSOs on finite cyclic groups.
Let Ω = Z/N be an Abelian cyclic group. The ND vector Hilbert space of
classical discrete A-valued signals is Sig0 = {f(x)|f(x) : Z/N −→ A}.
The characters of Z/N are discrete harmonic A-valued signals χω(x) =
εωx, where ω ∈ (Z/N)∗ = Z/N, and ε is a primitive N th root in an
algebra A. They form a unitary basis in Sig0. The Fourier transform in
Sig0 is the discrete Fourier A-valued transform

f(x) = CF−1
N {F} =

∑

ω∈ �
/N

F (ω)εωx

F (ω) = CFN{f} =
∑

x∈ �
/N

f(x)ε−ωx.

All Fourier spectra form the ND vector Hilbert spectral space Sp0 =
{F (ω) | F (ω) : Z/N −→ A}. The “time-frequency” and “frequency-
time” domains are Ω×Ω∗ = Ω×Ω = Z/N ×Z/N, i.e., the phase space
is the 2D discrete torus Z/N × Z/N. The “time” and “frequency”-shift

operators T̂ v
x , D̂

ν
ω are defined by T̂ v

xf(x) := f(x⊕v), D̂ν
ωF (ω) := f(ω⊕ν),

where

T̂ v
x :=




0 1
0 1

. . .

0 1
1 0




v

, D̂ν
ω :=




0 1
0 1

. . .

0 1
1 0




ν

and ⊕ is the symbol representing addition modulo N. It is obvious that

CFN {̂T v
x}CF−1

N = M̂v
ω, CF−1

N {D̂ν
ω}CFN = M̂−ν

x . Here, modulation op-

erators M̂ν
x and M̂v

ω are defined by M̂ν
x f(x) := ενxf(x), M̂v

ωF (ω) :=
εωvF (ω), where

M̂ν
x =




1
ε1

ε2

. . .

εN−1




ν

, M̂v
ω =




1
ε1

ε2

. . .

εN−1




v

.

The “time”-shift and “frequency”-shift operators induce the following
pair of sets of noncommutative Heisenberg–Weyl operators:

HWx :=
{

Ê(ν,v)
x = M̂ν

x T̂
v
x | ν ∈ Z/N, v ∈ Z/N

}
,
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HWω :=
{

Ê(v,ν)
ω = M̂v

ωD̂
ν
ω | v ∈ Z/N, ν ∈ Z/N

}
.

They act on Sig0 and Sp0 by the following rules:

Ê(ν,v)
x f(x) := M̂ν

x T̂
v
x f(x) = ενxf(x⊕ v),

Ê(v,ν)
ω F (ω) := M̂v

ωD̂
ν
ωF (ω) = εvωF (ω ⊕ ν).

2

Example 2 Let ΩN and Ω∗
N

be two versions of a finite Abelian group of
order N := N1N2 · · ·Nn. The fundamental structure theorem for finite
Abelian groups implies that we may write ΩN and Ω∗

N
as the direct sums

of cyclic groups, i.e., ΩN =
m⊕

l=1

Z/Nl, and Ω∗
N

=
m⊕

l=1

Z
∗/Nl, where both

Z/Nl and Z
∗/Nl are identified with the integers 0, 1, . . . , Nl − 1 under

addition modulo Nl. Group elements x ∈ ΩN and ω ∈ Ω∗
N

are identified
with points x = (x1, x2, . . . , xm) and ω = (ω1, ω2, . . . , ωm) of the mD
discrete torus, respectively. Let us embed finite groups ΩN and Ω∗

N
into

two discrete segments ΩN −→ Ω := [0,N− 1], Ω∗
N
−→ Ω∗ := [0,N− 1]∗

using a mixed-radix number system

x =
∑

i

xi




i−1∏

j=0

Nj


 , ω =

∑

i

ωi




i−1∏

j=0

Nj


 .

The weights of x1 and ω1 are unity (N0 = 1.) The group addition induces
“exotic” shifts in the segments Ω := [0,N − 1] and Ω∗ := [0,N − 1]∗,
which we will denote as ⊕

N

. If x = (x1, . . . , xm), v = (v1, . . . , vm) and

ω = (ω1, . . . , ωm), ν = (ν1, . . . , νm), then

x⊕
N

v = (x1, . . . , xm)⊕
N

(v1, . . . , vm) = (x1⊕
N1

v1, . . . , xm ⊕
Nm

vm)

and

ω⊕
N

ν = (ω1, . . . , ωm)⊕
N

(ν1, . . . , νm) = (ω1⊕
N1

ν1, . . . , ωm ⊕
Nm

νm).

The Fourier transforms in the space of all A-valued signals defined on
the finite Abelian group ΩN = Z/N1×Z/N2× . . .×Z/Nm in the form of
Ω = [0,N− 1] have a great interest for digital signal processing. Denote
this space by Sig0 = L(Ω,A). Let εNl

be a primitive A-valued Nl-th root.
The set of all characters of the group ΩN can be described by χω(x) =
χω1

(x1) · · ·χωm
(xm) = εω1x1

1 · · · εωmxm

m . They form an orthogonal basis
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in the signal space L(Ω,A). The Fourier transform of a signal f(x) ∈
L(Ω,A) is defined as

F (ω) = CFN{f}(ω) =
∑

t∈Ω
f(x)χω(x), ω ∈ Ω∗. (9)

The inverse Fourier transform is

f(x) = CF−1
N
{F}(x) =

1

N

∑

ω∈Ω∗

F (ω)χω(x), t ∈ Ω. (10)

The set of all functions F (ω) forms the spectral space Sp0 = L(Ω∗,A).

The “time” and “frequency”-shift operators T̂ v
x , D̂

ν
ω are defined by

T̂ v
xf(x) := f(x⊕

N

v), D̂ν
ωF (ω) := f(ω⊕

N

ν),

where
T̂ v

x = T̂
(v1,v2,...,vm)
(x1,x2,...,xm)

= T̂ v1

x1
⊗ T̂ v2

x2
⊗ . . .⊗ T̂ vm

xm
,

and
D̂ν

ω = D̂
(ν1,ν2,...,νm)
(ω1 ,ω2,...,ωm) = D̂ν1

ω1
⊗ D̂ν2

ω2
⊗ . . .⊗ D̂νm

ωm
.

Obviously,

CFN{T̂ v
x }CF−1

N
= M̂v

ω

CF−1
N
{D̂ν

ω}CFN = M̂−ν
x .

Here, modulation operators M̂ν
x and M̂v

ω are defined by M̂ν
xf(x) :=

χω(x)f(x) and M̂v
ωF (ω) := χω(x)F (ω), where

M̂ν
x = M̂

(ν1,ν2,...,νm)
(x1,x2,...,xm)

= M̂ν1

x1
⊗ M̂ν2

x2
⊗ . . . ⊗ M̂νm

xm

and
M̂v

ω = M̂
(v1,v2,...,vm)
(ω1,ω2,...,ωm) = M̂v1

ω1
⊗ M̂v2

ω2
⊗ . . .⊗ M̂vm

ωm
.

2

Example 3 Let Ω = [a, b], Ω∗ = {0, 1, 2, ...} := N0, and let ϕk(t) ≡
pk(t) be a family of classical orthogonal polynomials. Then

F (k) :=

b∫

a

f(t)pk(t)%(t)dt, f(t) :=

∞∑

k=0

h−1
k F (k)pk(t) (11)

is the pair of generalized Fourier transforms, where k ∈ N0, t ∈ [a, b],
%(t)dt = dµ(t) and dµ(k) = h−1

k are measures on the signal and spectral
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domains respectively. We consider special cases of classical orthogonal
polynomials. Case 1. Let Ω = [−1,+1], %(t) = (1 − t)α (1 + t)β,

α > β − 1 and Jac
(α,β)
k (t) be (α, β)-Jacobi polynomials. In this case,

generalized Fourier transforms for each α and β are the Fourier–Jacobi
transforms

(α,β)F (k) = (α,β)CF{f}(k) =

+1∫

−1

f(t)Jac
(α,β)
k (t)(1− t)α(1 + t)βdt, (12)

f(t) := (α,β)CF−1{F}(k)=
∞∑

k=0

h−1
k

(α,β)F (k)Jac
(α,β)
k (t) (13)

for special constants hk. If α> β >− 1
2 then the multiplication formula

for (α, β)-Jacobi polynomials is

Jac
(α,β)
k (τ)Jac

(α,β)
k (t) = P

(α,β)
k (t� τ) =

1∫

0

π∫

0

Jac
(α,β)
k

[
1

2
(1 + τ)(1 + t)+

1

2
(1− τ)(1− t)s2 +

√
(1− τ2)(1− t2)s cos θ −1

]
dµ(s, θ), (14)

where dµ(s, θ) = 2Γ(α+1)√
πΓ(α−β)Γ(β+ 1

2
)
(1− s2)α−β−1s2β+1(sin θ)2βdsdθ. There

follows

(T τ
t f)(t) = f(t� τ) =

1∫

0

π∫

0

f

[
1

2
(1 + τ)(1 + t)+

+
1

2
(1− τ)(1− t)s2 +

√
(1− τ2)(1− t2)s cos θ − 1

]
dµ(s, θ). (15)

Case 2. If α = β = 0 then {Jac(0,0)
k (t)}∞k=0 = {Legk(t)}∞k=0 is the

Legendre basis. From (15) we obtain the Legendre GSOs

(T τ
t f)(t) = f(t� τ) =

1

2π

1∫

−1

f
(
τt+

√
(1− τ2)(1− t2)s

)
(1− s2)−1/2ds,

(16)
associted with the Legendre transform. Case 3. If α = β = −0.5, then

{Jac(−0.5,−0.5)
k (t)}∞k=0 = {Chk(t)}∞k=0 is the Legendre basis. In this case,

Ω = (−1, 1), %(t) = (1− t2)−1/2, h0 = π
2 , hn = π, n ∈ N0 ≡ Ω∗. For the

Chebyshev polynomials the following multiplication formula is known:

Chn(τ)Chn(t) = Chn(t� τ) =
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1

2

[
Chn

(
τt+

√
(1− τ2)(1 − t2)

)
+ Chn

(
τt−

√
(1− t2)(1− t2)

)]
.

(17)
Therefore,

(T τ
t f)(t) = f(t� τ) =

1

2

[
f
(
tτ +

√
(1− τ2)(1− t2)

)
+ f

(
tτ −

√
(1− τ2)(1 − t2)

)]
. (18)

2

Example 4 Finally, we consider the infinite interval Ω = (−∞,+∞).
Let us introduce the signal and the spectrum spaces

L2

(
R,C, w(t)

)
=



f(t)

∣∣∣
(
f(t) : R −→ C

)
&
( +∞∫

−∞

|f(t)|2w(t)dt <∞
)


,

L2(N,C, µn) =

{
F (n)

∣∣∣
(
F (n) : N −→ C

)
&
(∑

n∈ �
wn|F (n)|2 <∞

)}
,

with the scalar products

(f, g) :=

+∞∫

−∞

f(t)g(t)e−t2/2 dt, (F,G) =
∑

n∈ �

1

2nn!
√
π
F (n)G(n),

where Ω∗ = N = {0, 1, 2, . . . , }, dµ(t) = w(t)dt, w(t) = e−t2/2, and
wn = 1/2nn!

√
π. In this case, the generalized classical Fourier transform

of a signal f(t) ∈ L2

(
R,C, e−t2/2

)
is the Fourier–Hermite transform

F (n) = CF{f}(n) =

∫ +∞

−∞
f(t)Hern(t)e−t2/2 dt,

where

f(t) = CF−1{F}(n) =
∞∑

n=0

1

2nn!
√
π
F (n)Hern(t),

where Hern(t) are Hermite polynomials. Since

Herk(t)Herk(τ) = Herk(t� τ) =
(−1)kΓ(k + (3/2))2k+1

√
π

×

×
∫ π

0
Herk

[
(t2 + τ2 + 2tτ cosϕ)1/2 exp(−tτ sinϕ) sinϕJ0(tτ sinϕ)dϕ

]
,

(19)
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then
T τ

t f(t) = f(t� τ) =

=

∫ π

0
f
(√

t2 + τ2 + 2tτ cosϕ
)
e−tτ cos ϕ sinϕJ0(tτ sinϕ)dϕ, (20)

where J0(.) is the Bessel function. 2

1.3 Generalized convolutions and correlations

It is well known that stationary linear dynamic systems (LDS) are de-
scribed by convolution integrals. Using the GSO notion, we can formally
generalize the notions of convolution and correlation [11]–[18].

Definition 2 The following functions

y(x) := (h♦f)(x) =

∫

v∈Ω

h(v)f(x � v)dµ(v), (21)

Y (ω) := (H♥F )(ω) =

∫

ν∈Ω∗

H(ν)F (ω 	 ν)dµ(ν) (22)

are called the ♦ and ♥-convolutions respectively.

The spaces Sig0 and Sp0 equipped with multiplications ♦ and ♥ form
commutative signal and spectral convolution algebras 〈〈Sig0,♦〉〉 and
〈〈Sp0,♥〉〉, respectively.

Definition 3 The expressions

(f♣g)(v) :=

∫

x∈Ω

f(x)g(x� v)dµ(x), (23)

(F♠G)(ν) :=

∫

ω∈Ω∗

F (ω)G(ω 	 ν)dµ(ω) (24)

are referred to as the cross ♣ and ♠-correlation functions of signals f, g
and spectra F,G, respectively. If f = g and F = G, then the crosscorre-
lation functions are called the ♣ and ♠-autocorrelation functions.

The measures indicating the similarity between fF -distributions and
Ff -distributions and their time and frequency-shifted versions are their
crosscorrelation functions.

Definition 4 The expressions

(fF♣♠gG)(v, ν) :=

∫

t∈Ω

∫

ω∈Ω∗

fF (x, ω)gG(x�v, ω	ν)dµ(x)dµ(ω), (25)
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(Ff♠♣Gg)(ν, v) :=

∫

ν∈Ω∗

∫

v∈Ω

Ff(ω, t)Gg(ω 	 ν, t� v)dµ(x)dµ(ω). (26)

are referred to as the ♣♠ and ♠♣-crosscorrelation functions of the dis-
tributions respectively. If fF (x, ω) = gG(x, ω) and Ff(ω, t) = Gg(ω, t),
then the crosscorrelation functions are called the autocorrelation func-
tions.

Theorem 2 Generalized classical Fourier transforms (1) and (2) map
♦ and ♥-convolutions and ♣ and ♠-correlations into the products of
spectra and signals, respectively,

CF {h♦f} = CF {h}CF {f)} , CF−1 {H♥F} = CF−1 {H}CF−1 {F}

CF {f♣g} = CF {f}CF {g}, CF−1 {F♠G} = CF−1 {F}CF−1 {G}

Taking special forms of the GSOs, one can obtain known types of con-
volutions and crosscorrelations: arithmetic, cyclic, dyadic, m-adic, etc.
Signal and spectral algebras have many of the properties associated with
classical group convolution algebras. Many of them are catalogued in
[9]–[19].

1.4 Generalized ambiguity functions and Wigner
distributions

The Wigner distribution was introduced in 1932 by E. Wigner [20]
in the context of quantum mechanics. There he defined the probability
distribution function of simultaneous values of the spatial coordinates
and impulses. Wigner’s idea was introduced in signal analysis in 1948
by J. Ville [21], but it did not receive much attention there until 1953
when P. Woodward [22] reformulated it in the context of radar theory.
Woodward proposed treating the question of radar signal ambiguity as
part of the question of target resolution. For that, he introduced a
function that described the correlation between a radar signal and its
Doppler-shifted and time-translated version:

AWa[f ](ν, v) =

+∞∫

−∞

f(x)f̄(x− v)e−jνxdx = CF
x→ν
{ffa(x, v)},

where ffa(x, v) := f(x)f̄(x− v). The distribution AWa[f ](ν, v) is called
the asymmetric Woodward ambiguity function. It describes the local
ambiguity of locating targets in range (time delay v) and in velocity
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(Doppler frequency ν). Its absolute value is called the uncertainty func-
tion since it is related to the uncertainty principle of radar signals.

The next time-frequency distribution is the so-called symmetric Wood-
ward ambiguity function:

AWs[f ](ν, v) := CF
x→ν

{
f
(
x+

v

2

)
f̄
(
x− v

2

)}
= CF

x→ν
{ff s(x, v)} , (27)

where ff s(x, v) := f
(
x+ v

2

)
f̄
(
x− v

2

)
. Analogously, we have expres-

sions for computing AWs[F ](v, ν) in the frequency domain

AWa[F ](ν, v) = CF−1

v←ω
{F (ω)F̄ (ω − ν)} = CF−1

v←ω
{FF a(ν, ω)},

AWs[F ](ν, v) = CF−1

v←ω
{F
(
ω +

ν

2

)
F̄
(
ω − ν

2

)
} = CF−1

v←ω
{FF s(ν, ω)}.

If F = CF{f}, then from Parseval’s relation we obtain

AWa[f ](ν, v) = AWa[F ](ν, v) and AWs[f ](ν, v) = AWs[F ](ν, v).

For this reason, we shall denote AWa[f ](ν, v), AWa[F ](ν, v) by AWa(ν, v)
and AWs[f ](ν, v), AWs[F ](ν, v) by AWs(ν, v). Further, we use the sym-
bol AW(ν, v) for both AWa(ν, v) and AWs(ν, v).

Important examples of time-frequency distributions are the so-called
asymmetrical and symmetrical Wigner–Ville distributions. They can
be defined as the 2D symplectic Fourier transform of AWa[f ](ν, v) and
AWs[f ](ν, v), respectively,

WVa[f ](x, ω) = CF−1

x←ν
CF
ω←v
{AWa[f ](ν, v)} = f(x)F (ω)e−jωx, (28)

WVs[f ](x, ω) =CF−1

x←ν
CF
ω←v
{AWs[f ](ν, v)}=

∞∫

−∞

f
(
x+

v

2

)
f̄
(
x− v

2

)
e−jωvdv.

(29)
The 2D symplectic Fourier transform in (29) and (28) can be also viewed
as two sequentially performed 1D transforms with respect to v and ν. The
transform with respect to ν yields the temporal autocorrelation functions

ffa(x, v) = CF−1

x←ν
{AWs[f ](ν, v)} = f(x)f(x− v),

ffs(x, v) = CF−1

x←ν
{AWs[f ](ν, v)} = f

(
x+

v

2

)
f
(
x− v

2

)
.

The transform with respect to ν yields the frequency autocorrelation
functions

FFa(ν, ω) = CF
ω←v
{AWs[F ](ν, v)}= F (ω)F (ω − ν),
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CF−1

v←ω

CF
v→ω

CF−1

ν→x

CF
ν←x

CF−1

ν→x

CF
v→ω

CF−1

v←ω

CF
ν←x
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6

?

6

?

CF−1

ν→x
CF−1

ω→v

CF
x←ν

CF−1

v←ω

CF
x←ν

CF−1

ω←v

CF−1

ν→x
CF
v→ω

Figure 1. Diagram of relations between the different generalized 2D distributions

FFs(ν, ω) = CF
ω←v
{AWs[F ](ν, v)} = F

(
ω +

ν

2

)
F
(
ω − ν

2

)
.

We can formally generalize the notions of cross-ambiguity functions and
Wigner-Ville distributions using the GSO notion.

Definition 5 The symmetric and asymmetric generalized Woodward
distributions (cross-ambiguity functions) of two signals f, g and two spec-
tra F,G are defined by

AWs[f, g](ν, v)= CF
ν←x

{
fgs
}

=

∫

x∈Ω

[
f
(
x�

v

2

)
ḡ
(
x�

v

2

)]
ϕ̄ν(x)dµ(x),

AWs[F,G](ν, v)=CF−1

v←ω

{
FGs

}
=

∫

ω∈Ω∗

[
F
(
ω⊕ ν

2

)
Ḡ
(
ω	 ν

2

)]
ϕω(v)dµ(ω),

AWa[f, g](ν, v) = CF
ν←x

{
fga
}

=

∫

x∈Ω

[
f(x)ḡ(x� v)

]
ϕ̄ν(x)dµ(x),

AWa[F,G](ν, v) = CF−1

v←ω

{
FGa

}
=

∫

ω∈Ω∗

[
F (ω)Ḡ(ω	ν)

]
ϕω(v)dµ(ω).

Definition 6 The generalized symmetric and asymmetric Wigner-Ville
distributions of two signals f, g and two spectra F,G are defined by

WVs[f, g](x, ω) = CF
ω←v
{ fgs} =

∫

v∈Ω

[
f
(
x�

v

2

)
ḡ
(
x�

v

2

)]
ϕ̄ω(v)dµ(v),
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WVs[F,G](x, ω) =CF−1

x←ν
{FGs}=

∫

ν∈Ω∗

[
F
(
ω ⊕ ν

2

)
Ḡ
(
ω ⊕ ν

2

)]
ϕν(x)dµ(ν),

WVa[f, g](x, ω) := CF
ω←v
{fga} = f(x)F (ω)ϕ̄ω(x),

WVa[F,G](x, ω) := CF−1

x←ν
{FGa} = F (ω)f̄(x)ϕω(x).

Figure 1 is a flowchart relating

AW[f, g](ν, v), AW[F,G](ν, v)

and

WV[f, g](x, ω), WV[F,G](x, ω)

and

fg(x, v), FG(ν, ω).

We can construct two vector Hilbert spaces of “time-frequency” and
“frequency-time” distributions

WV := {WV(x, ω) | WV(x, ω) : Ω× Ω∗ −→ A},

AW := {AW(ν, v) | AW(ν, v) : Ω∗ × Ω −→ A}.

Definition 7 The generalized Woodward–Gabor ambiguity transforms
(or short-time and short-frequency generalized Fourier transforms) WGg

and WGG associated with functions g and G are defined as the following
mappings:

WGg : L(Ω,A) −→ L(Ω∗ × Ω,A), WGG : L(Ω∗,A) −→ L(Ω∗× Ω,A)

given by

WGg{f}(ν, v) := AW[f, g](ν, v), WGG{F}(ν, v) := AW[F,G](v, ν).

Definition 8 The generalized Wigner-Ville transforms WVg and WVG

associated with functions g and G are defined as mappings

WVg : L(Ω,A) −→ L(Ω×Ω∗,A), WVG : L(Ω∗,A) −→ L(Ω×Ω∗,A)

given by

WVg{f}(x, ω) := WV[f, g](x, ω), WVG{F}(x, ω) := WV[F,G](x, ω).
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2. Generalized quantum signal/system theory
on hypergroups

2.1 Basic definitions

The basic objects of quantum harmonic analysis (QHA) are related
not to classical signals and spectra f, F but to quantum signals and
quantum spectra (Hermitian operators) f̂ , F̂ associated with classical
signals and spectra as follows:

f → AW[f ]→ f̂ , F → AW[F ]→ F̂ .

These maps are called the Weyl quantizations of signals and spectra,
respectively. There are also the Schwinger quantizations using Wigner–
Ville distributions:

f →WV[f ]→ f̂ , F →WV[F ]→ F̂ .

The functions AW[f ](ν, v), AW[F ](ν, v) (or WV[f ](x, ω), WV[F ](x, ω))
are called the symbols (a symbol is not a kernel) of the quantum signal

f̂ and the quantum spectra F̂ , respectively, and are denoted by

AW[f ](ν, v) := sym{f̂}, AW[F ](v, ν) := sym{F̂},

or
WV[f ](x, ω) := sym{f̂}, WV[F ](ω, x) := sym{F̂}.

Vice versa, a quantum signal f̂ and quantum spectra F̂ are called the
operators associated with a classical signal f and classical spectrum by
symbols AW[f ], AW[F ] (or by WV[f ], WV[F ]), respectively, and they
are denoted by

f̂ := Op{AW[f ]}, F̂ := Op{AW[F ]},

or
f̂ := Op{WV[f ]}, F̂ := Op{WV[F ]}.

All quantum signals f̂ and quantum spectra F̂ form the following quan-
tum spaces:

Sig1 := {f̂ | f̂ are operators acting in L2(Ω,A)},

Sp1 := {F̂ | F̂ are operators acting in L2(Ω
∗,A)}.

Let Sig1 and Sp1 be the spaces of quantum signals and quantum
spectra with the following scalar products and norms:

〈f̂1|f̂2〉 := Tr(f̂1f̂
†
2), ||f̂ || := 〈f̂ |f̂〉 = Tr(f̂ f̂ †),
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〈F̂1|F̂ †2 〉 := Tr(F̂1F̂
†
2 ), ||F̂ || := 〈F̂ |F̂ 〉 = Tr(F̂ F̂ †),

where Tr(.) denotes the trace.

Definition 9 The spaces Sig1, Sp1 with the scalar products 〈f̂1|f̂2〉,
〈F̂1|F̂2〉 and norms ||f̂ ||, ||F̂ || are called the Hilbert–Liouville spaces.

Let {ϕ̂λ}λ∈Λ and {ψ̂λ}λ∈Λ be two Λ-parametric families of operators,
parametrized by the label λ = (λ1, λ2, . . . , λr) ∈ Λ ⊂ Rr of a subset Λ of
an rD space Rr endowed with a suitable measure µ(λ). These families
are called the quora for any subalgebras Alg1 ⊂ Sig1 and Alg∗

1
⊂ Sp1,

if every quantum signal f̂ ∈ Alg1 and quantum spectrum F̂ ∈ Alg∗1 is
determined by all scalar products

FT(λ)=〈f̂ |ϕ̂λ〉=Tr(f̂ ϕ̂†λ), TF(λ)=〈F̂ |ψ̂λ〉=Tr(F̂ ψ̂†λ)

for all ϕ̂λ and ψ̂λ. The fundamental property of the quora is that any
quantum signal and spectrum can be expressed as integral transforms

f̂ = QF−1{FT(λ)} =

∫

λ∈Λ

FT(λ)ϕ̂λdµ(λ) = Op{FT(λ)}, (30)

F̂ = QF−1{TF(λ)} =

∫

λ∈Λ

TF(λ)ψ̂λdµ(λ) = Op{TF(λ)}, (31)

where
FT(λ) = QF{f̂} = 〈f̂ |ϕ̂λ〉 = Tr(f̂ ϕ̂†λ) = sym{f̂}, (32)

TF(λ) = QF{f̂} := 〈f̂ |ψ̂†λ〉 = Tr(f̂ ψ̂λ) = sym{F̂}. (33)

Usually, FT(λ) and TF(λ) are Wigner–Ville distribution and Woodward
ambiguity functions, respectively. Further we shall use only Woodward
ambiguity functions to design quantum signals and spectra.

Definition 10 Let {ϕ̂λ}λ∈Λ and {ψ̂λ}λ∈Λ be two r-parametric families
of operators. Then transforms (30)–(33) are called the abstract quantum
Fourier transforms for the algebras Alg1 ⊂ Sig1 and Alg1

∗ ⊂ Sp1

associated with two quora {ϕ̂λ}λ∈Λ and {ψ̂λ}λ∈Λ, respectively.

2.2 Classical Weyl quantization

It is well known that for the classical shift we have

T̂ v
x f(x) := f(x+ v) =

∞∑

k=0

vk

k!

(
d

dx

)k

f(x)=

{ ∞∑

k=0

vk

k!

(
d

dx

)k
}
f(x)=
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{ ∞∑

k=0

(iv)k

k!

(
−i d
dx

)k
}
f(x)=

{ ∞∑

k=0

(ivD̂x)k

k!

}
f(x) = eiv ˆ�

xf(x), (34)

where D̂x = −i d
dx . This expression represents the decomposition of the

ordinary finite shift into a series of powers of the differential opera-
tor d

dx and is called the infinitesimal representation of translation shift.

Analogously, we can obtain D̂ν
ωF (ω) = F (ω + ν) = eiν ˆ�

ωF (ω), where

D̂ω = −i d
dω . Hence, T̂ v

x = eiv
ˆ�

x , D̂ν
ω = eiν

ˆ�
ω . In 1932 H. Weyl proposed

[23] to modify the Fourier transform formula by changing its complex-
valued harmonics into operator-valued harmonics. He used the following
three quora for his quantization procedures of the signal space Sig0 :
{
E[ν,v]

x = ei(ν
ˆ�

x+v ˆ�
x)
}
,
{

E(ν,v)
x = eiν

ˆ�
xeiv

ˆ�
x

}
,
{

E(v,ν)
x = eiv

ˆ�
xeiν

ˆ�
x

}

associated with the classical Fourier transform, where multiplication M̂x

and differential D̂x operators are given by

M̂xf(x) := xf(x), D̂xf(x) := −if(x)

dx
.

Using the first quorum, H. Weyl wrote any quantum signal f̂ ∈ Sig1 as

f̂ := QFx

{
AW[f ]

}
=

Op
{
AW[f ]

}
=

∫

ν∈Ω∗

∫

v∈Ω

AW[f ](ν, v)ei[ν ˆ�
x+v ˆ�

x]dµ(ν)dµ(v), (35)

where

AW[f ](ν, v) = QF−1
x {AW[f ]} = Sym{f̂} = Tr

[
f̂ e−i[ν ˆ�

x+v ˆ�
x]
]
. (36)

Transformations (35) and (36) are called the direct and inverse ordinary
quantum Fourier transforms in the quantum signal space. It is natural
to view maps AW[f ] −→ f̂ , f̂ −→ AW[f ] as operator-valued Fourier
transforms. But we can write them in the explicit form of the integral
kernels. For example, for the map AW[f ] −→ f̂ the kernel f(x, y) of the

operator f̂ has the form:

f(x, y) =

∫

ν∈Ω∗

AW[f ](ν, y − x)eiνxei
ν

2
(y−x)dµ(ν).

Of course, for quantization of the spectral space Sp0 one can use three
dual quora
{
E[v,ν]

ω = ei[v
ˆ�

ω+ν ˆ�
ω]
}
,
{
E(v,ν)

ω = eiv
ˆ�

ωeiν
ˆ�

ω

}
,
{
E(v,ν)

ω = eiν
ˆ�

ωeiv
ˆ�

ω

}
,
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where M̂ωF (ω) := ωF (ω), D̂ωF (ω) := −iF (ω)
dω . Using the first quorum,

we can write any quantum spectrum F̂ ∈ Sp1 as follows:

F̂ := QFω

{
AW[F ]

}
=

Op
{
AW[F ]

}
=

∫

v∈Ω

∫

ν∈Ω∗

AW[F ](v, ν)ei[v ˆ�
ω+ν ˆ�

ω ]dµ(v)dµ(ν), (37)

where

AW[F ](v, ν) = QF−1
x {AW[F ]} = Sym{F̂} = Tr

[
F̂ e−i[v ˆ�

ω+ν ˆ�
ω ]
]
,

(38)
Transformations (37) and (38) are called the direct and inverse ordinary
quantum Fourier transforms in the quantum spectral space.

2.3 Generalized Heisenberg–Weyl operators

Let us construct generalized operator-valued hyperharmonics associ-
ated with an orthogonal basis {ϕω(x)}ω∈Ω∗ .

Definition 11 Operator D̂x, for which D̂xϕω(x) = ωϕω(x) is valid, is
called the generalized differential operator.

The generalized differential operator appears as an ordinary differen-

tial operator with variable coefficients, for example D̂x = p2(x)
�

D2

dx2 +

p1(x)
d
dx +p0(x), where p2(x), p1(x), p0(x) are some variable coefficients.

Let us now find a connection between the GSOs T̂ v
x and the generalized

differential operator D̂x. It can be found using the Taylor expansion.

Theorem 3 Let {ϕω(x)}ω∈Ω∗ ∈ Sig0 be some Fourier basis, consisting
of A-valued basis functions. Then all GSOs associated with it have the

infinitesimal representation: T̂ v
x = ϕ ˆ�

x
(v), D̂ν

ω = ϕν(D̂ω), and are called
the operator-valued hyperharmonics associated with an orthogonal basis

{ϕω(x)}ω∈Ω∗ , where D̂xϕω(x) = ωϕω(x), D̂ωϕω(x) = xϕω(x).

Proof: If the signals ϕω(v) are decomposed into the following series
of ω, ϕω(v) =

∑∞
k=0Xk(v)(ω)k , then we can construct the operators

ϕ ˆ�
x
(v) =

∞∑
k=0

Xk(v)D̂
k
x. For these operators we have

(
ϕ ˆ�

x
(v)
)
ϕω(x) =

( ∞∑

k=0

Xk(v)D̂
k
x

)
ϕω(x) =

( ∞∑

k=0

Xk(v)(ω)k

)
ϕω(x) =
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ϕω(v)ϕω(x) = ϕω(x� v) = T̂ v
xϕω(x), (39)

i.e., T̂ v
x = ϕ ˆ�

x
(v). Analogously, D̂ν

ω = ϕν(D̂ω).Obviously, M ν
x = ϕν(M̂x)

and M v
ω = ϕ � �

ω

(v). �

Using the hyperharmonics T̂ v
x = ϕ ˆ�

x
(v) and D̂ν

ω = ϕν(D̂ω) associated

with the basis {ϕω(x)}ω∈Ω∗ , we can construct generalized Heisenberg–
Weyl operators and quantum hyperharmonic analysis of quantum signals
and spectra.

The “time”-shift and “frequency”-shift operators together acting on
spaces Sig0 and Sp0 induce the following pair of sets of the Heisenberg–
Weyl operators:

HWx :=
{

Ê(ν,v)
x = M̂ν

x T̂
v
x = ϕν(M̂x)ϕ ˆ�

x
(v) | ν ∈ Ω∗, v ∈ Ω

}
,

HWω :=
{

Ê(v,ν)
ω = M̂v

ωD̂
ν
ω = ϕ� �

ω

(v)ϕν(D̂ω) | ν ∈ Ω∗, v ∈ Ω
}
.

They act on Sig0 and Sp0 by the following rules:

Ê(ν,v)
x f(x) :=

(
M̂ν

x T̂
v
xf
)

(x) = ϕν(x)f(x� v),

Ê(v,ν)
ω F (ω) :=

(
M̂v

ωD̂
ν
ωF
)

(ω) = ϕω(v)F (ω ⊕ ν).

Obviously,

F0
x→ω

{
Ê(ν,v)

x f(x)
}

= ϕν(v)Ê
(v,−ν)
ω F (ω)

and
F
−1
0

ω→x

{
Ê(v,ν)

ω F (ω)
}

= ϕν(v)Ê(ν,v)
x f(x).

Now we construct two sets of symmetric Heisenberg–Weyl operators:

SHWx =
{

Ê[ν,v]
x =ϕ1/2

ν (v)ϕν(M̂x)ϕ ˆ�
x
(v)
∣∣∣ν ∈ Ω∗, v ∈ Ω

}
,

SHWω =
{
Ê[v,ν]

ω =ϕ1/2
ν (v)ϕ � �

ω

(v)ϕν(D̂ω)
∣∣∣ν ∈ Ω∗, v ∈ Ω

}
.

These operators satisfy the following composition laws:

Ê[ν,v]
x Ê[ν′,v′]

x = ϕ1/2
ν (v′)ϕ

1/2
ν′ (v)Ê[ν+ν′ ,v+v′]

x

Ê[v,ν]
ω Ê[v′,ν′]

ω = ϕ1/2
ν (v′)ϕ

1/2
ν′ (v)Ê[v⊕v′ ,ν⊕ν′]

ω

and the “commutation” relations

Ê[ν,v]
x Ê[ν′,v′]

x = ϕν(v′)ϕν′(v)Ê[ν′,v′]
x Ê[ν,v]

x ,

Ê[v,ν]
ω Ê[v′,ν′]

ω = ϕν(v′)ϕν′(v)Ê[v′ ,ν′]
ω Ê[v,ν]

ω .
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2.4 Generalized Weyl quantizations

Let us consider the linear quantum spaces Sig1 and Sp1 of quantum

signals f̂ and quantum spectra F̂ , respectively. The inner product can

be defined by 〈f̂1|f̂2〉 := Tr(f̂1f̂
†
2), 〈F̂1|F̂2〉 := Tr(F̂1F̂

†
2 ). It is easy to

check that

Tr

[
Ê[ν,v]

x

(
Ê[ν′,v′]

x

)†]
= δ(ν � ν ′)δ(v � v′), (40)

Tr

[
Ê[v,ν]

ω

(
Ê[v′,ν′]

ω

)†]
= δ(v 	 v′)δ(ν 	 ν ′). (41)

The families
{
Ê

[ν,v]
x

}
[ν,v]∈Ω∗×Ω

and
{

Ê
[v,ν]
ω

}
[v,ν]∈Ω×Ω∗

form two quora in

quantum spaces. For this reason, any quantum signal f̂ ∈ Sig1 and

quantum spectra F̂ ∈ Sp1 can be written as follows:

f̂ = QFx

{
AW[f ]

}
= Op

{
AW[f ]

}
=

∫

ν∈Ω∗

∫

v∈Ω

AW[f ](ν, v)Ê[ν,v]
x dµ(ν)dµ(v),

(42)

F̂ = QFω

{
AW[F ]

}
(43)

= Op
{

AW[f ]
}

=

∫

v∈Ω

∫

ν∈Ω∗

AW[F ](v, ν)Ê[v,ν]
ω dµ(v) dµ(ν).

Using (40) and (41), one can invert (42) and (43) as follows:

AW[f ](ν, v) = QF−1
x {AW[f ]} = Sym{f̂} = Tr

[
f̂
(
Ê[ν,v]

x

)†]
, (44)

AW[F ](v, ν) = QF−1
x {AW[F ]} = Sym{F̂ } = Tr

[
F̂
(
Ê[v,ν]

ω

)†]
. (45)

The transformations (42) and (45) are called the generalized quantum
Fourier transforms.

Example 5 In this example we consider the Weyl quantization on a
finite cyclic group Ω = Ω∗ = Z/p, where p is a prime integer. In this
case,

Ê[ν,v]
x = ε

νv

2 Ê(ν,v)
x = ε

νv

2 M̂ν
x T̂

v
x =
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= ε
νv

2




1
ε1

ε2

. . .

εp−1




ν 


0 1
0 1

. . .

0 1
1 0




v

.

For this reason, the map

f̂ = QFx

{
AW[f ]

}
= Op

{
AW[f ]

}
=
∑

ν∈ �
/p

∑

v∈ �
/p

AW[f ](ν, v)Ê[ν,v]
x =

=
∑

ν∈ �
/p

∑

v∈ �
/p

AW[f ](ν, v)ε
νv

2




1
ε1

ε2

. . .

εp−1




ν 


0 1
0 1

. . .

0 1
1 0




v

(46)
is the discrete quantum Fourier transform associated with the cyclic
group Z.

2.5 Generalized quantum convolutions

For the product of two quantum signals f̂ and ĝ we have

f̂ ĝ =

∫

(ν,v)

∫

(ν′,v′)

AW[f ](ν, v)Ê[ν,v]
x AW[g](ν ′, v′)Ê[ν′,v′]

x dµ(ν, v)dµ(ν ′, dv′) =

∫

(ω,x)

(
AW[f ] ~ AW[g]

)
(ω, x)Ê[ω,x]

x dµ(ω)dx =

QFx {AW[f ] ~ AW[g]} = Op {AW[f ] ~ AW[g]} ,
where the expression

(
AW[f ] ~ AW[g]

)
(ω, x) = QF−1

x {f̂ ĝ} = sym{f̂ ĝ} =

∫

(ν,v)

FT(ν, v)GT(ω 	 ν, x� v)ϕ̄
1/2
ν′ (v)ϕ1/2

ν (v′)dµ(ν)dv (47)

is called the generalized twisted signal convolution. Analogously,

F̂ Ĝ =

∫

(v,ν)

∫

(v′ ,ν′)

AW[F ](v, ν)Ê[v,ν]
ω AW[F ](ν ′, v′)Ê[v′,ν′]

ω dµ(ν)dv dµ(ν ′)dv′=
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∫

(x,ω)

(
AW[F ]FAW[G]

)
(x, ω)Ê[x,ω]

ω dx dµ(ω) =

QFω {AW[F ]FAW[G]} = Op {AW[F ]FAW[G]} ,
where

(AW[F ]FAW[G]) (x, ω) := QF−1
ω {F̂ Ĝ} = sym

{
F̂ Ĝ
}

=

∫

(v,ν)

AW[F ](v, ν)AW[G](x � v, ω 	 ν)ϕ1/2
ν′ (v)ϕ̄1/2

ν (v′)dv dµ(ν) (48)

is called the generalized twisted spectral convolution.
According to the Pontryagin duality principle we can define the gen-

eralized quantum convolution of quantum signals by

f̂ ~ ĝ := Op{AW[f ]AW[g]} = QF(s)
x {AW[f ]AW[g]},

where

AW[f ](ν, v)AW[g][ν, v] =

sym{f̂~
1
ĝ} = QF−1

x {f̂~
1
ĝ} = Tr

[(
f̂ ~ ĝ

)(
E[ν,v]

x

)†]
,

and the generalized quantum convolution of quantum spectra by

F̂FĜ := Op
{
AW[F ]AW[G]

}
= QFω

{
AW[F ]AW[G]

}
,

where

AW[F ](ν, v)AW[G][ν, v] =

sym
{
F̂FĜ

}
= QF−1

x

{
F̂F

1
Ĝ

}
= Tr

[(
F̂FĜ

)(
E[ν,v]

x

)†]
.

Theorem 4 The quantum generalized convolutions and quantum gen-
eralized Fourier transforms are related by the expressions:

QFx {AW[f ] ~ AW[g]} = f̂ ĝ, QFx {AW[F ]FAW[G]} = F̂ Ĝ,

and

QF−1
x

{
f̂ ~ ĝ

}
= AW[f ](ν, v)AW[g][ν, v],

QF−1
x

{
F̂FĜ

}
= AW[F ](ν, v)AW[G][ν, v].
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3. Conclusion

In this paper we have examined the idea of generalized shift operators
associated with an arbitrary orthogonal transform and generalized linear
and nonlinear convolutions based on these generalized shift operators.
Such operators allow one to unify and generalize the majority of known
methods and tools of signal processing based on the classical Fourier
transform for generalized classical and quantum signal theories.
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