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Abstract Given a quadratic form on a vector space, the geometric algebra of
the corresponding pseudo-euclidean space is defined in terms of a sim-
ple set of rules which characterizes the geometric product of vectors.
We develop geometric algebra in such a way that it augments, but re-
mains fully compatible with, the more traditional tools of matrix alge-
bra. Indeed, matrix multiplication arises naturally from the geometric
multiplication of vectors by introducing a spectral basis of mutually
annihiliating idempotents in the geometric algebra. With the help of
a few more algebraic identities, and given the proper geometric inter-
pretation, the geometric algebra can be applied to the study of affine,
projective, conformal and other geometries. The advantage of geometric
algebra is that it provides a single algebraic framework with a compre-
hensive, but flexible, geometric interpretation. For example, the affine
plane of rays is obtained from the euclidean plane of points by adding
a single anti-commuting vector to the underlying vector space. The key
to the study of noneuclidean geometries is the definition of the oper-
ations of meet and join, in terms of which incidence relationships are
expressed. The horosphere provides a homogeneous model of euclidean
space, and is obtained by adding a second anti-commuting vector to the
underlying vector space of the affine plane. Linear orthogonal trans-
formations on the higher dimensional vector space correspond to con-
formal or Möbius transformations on the horosphere. The horosphere
was first constructed by F.A. Wachter (1792–1817), but has only re-
cently attracted attention by offering a host of new computational tools

∗I gratefully acknowledge the support given by INIP of the Universidad de las Américas. The
author is a member of SNI, Exp. 14587.
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in projective and hyperbolic geometries when formulated in terms of
geometric algebra.

Keywords: affine geometry, Clifford algebra, conformal geometry, conformal group,
euclidean geometry, geometric algebra, horosphere, Möbius transforma-
tion, non-euclidean geometry, projective geometry, spectral decomposi-
tion.

1. Geometric algebra

A Geometric algebra is generated by taking linear combinations of
geometric products of vectors in a vector space taken together with a
specified bilinear form. Here we shall study the geometric algebras of
the pseudo-euclidean vector spaces Gp,q := Gp,q(IR

p,q) for which we have
the indefinite metric

x · y =

p
∑

i=1

xiyi −

p+q
∑

j=p+1

xjyj

for x =
(

x1 · · · xp+q

)

and y =
(

y1 · · · yp+q

)

in IRp,q. We first
study the geometric algebra of the more familiar Euclidean space.

1.1 Geometric algebra of Euclidean n-space

We begin by introducing the geometric algebra Gn := G(IRn) of the
familiar Euclidean n-space

IRn = {x| x =
(

x1 · · · xn

)

for xi ∈ IR}.

Recall the dual interpretations of each element x ∈ IRn, both as a point
of IRn with the coordinates

(

x1 · · · xn

)

and as the position vector or
directed line segment from the origin to the point. We can thus express
each vector x ∈ IRn as a linear combination of the standard orthonormal
basis vectors {e1, e2, · · · , en} where ei =

(

0 · · · 0 1i 0 · · · 0
)

,
namely

x =

n
∑

i=1

xiei.

The vectors of IRn are added and multiplied by scalars in the usual
way, and the positive definite inner product of the vectors x and y =
(

y1 · · · yn

)

is given by

x · y =

n
∑

i=1

xiyi. (1)
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The geometric algebra Gn is generated by the geometric multiplication
and addition of vectors in IRn. In order to efficiently introduce the geo-
metric product of vectors, we note that the resulting geometric algebra
Gn is isomorphic to an appropriate matrix algebra under addition and
geometric multiplication. Thus, like matrix algebra, Gn is an associative,
but non-commutative algebra, but unlike matrix algebra the elements of
Gn are assigned a comprehensive geometric interpretation. The two fun-
damental rules governing geometric multiplication and its interpretation
are:

For each vector x ∈ IRn,

x2 = xx = |x|2 =

n
∑

i=1

x2
i (2)

where |x| is the usual Euclidean norm of the vector x.

If a1, a2, . . . , ak ∈ IRn are k mutually orthogonal vectors, then the
product

Ak = a1a2 . . . ak (3)

is totally antisymmetric and has the geometric interpretation of a
simple k-vector or a directed k-plane .1

Let us explore some of the many consequences of these two basic rules.
Applying the first rule (2) to the sum a + b of the vectors a, b ∈ IR2, we
get

(a + b)2 = a2 + ab + ba + b2,

or

a · b :=
1

2
(ab + ba) =

1

2
(|a + b|2 − |a|2 − |b|2)

which is a statement of the famous law of cosines . In the special case
when the vectors a and b are orthogonal, and therefore anticommutative
by the second rule (3), we have ab = −ba and a · b = 0.

If we multiply the orthonormal basis vectors e12 := e1e2, we get the 2-
vector or bivector e12, pictured as the directed plane segment in Figure 1.
Note that the orientation of the bivector e12 is counterclockwise, and
that the bivector e21 := e2e1 = −e1e2 = −e12 has the opposite or
clockwise orientation.

1This means that the product changes its sign under the interchange of any two of the
orthogonal vectors in its argument.
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Figure 1. The directed plane segment e12 = e1e2.

We can now write down an orthonormal basis for the geometric alge-
bra Gn, generated by the orthonormal basis vectors {ei| 1 ≤ i ≤ n}. In
terms of the modified cartesian-like product, ×n

i=1(1, ei) :=

{1, e1, . . . , en, e12, . . . , e(n−1)n, . . . , . . . , e1···(n−1), . . . , e2···n, e1...n}.

There are
(

n
0

)

+

(

n
1

)

+

(

n
2

)

+ · · · +

(

n
n − 1

)

+

(

n
n

)

= 2n

linearly independent elements in the standard orthonormal basis of Gn.
Any multivector or geometric number g ∈ Gn can be expressed as a sum
of its homogeneous k-vector parts,

g = g0 + · · · + gk + · · · + gn

where gk :=< g >k=
∑

σ ασeσ where σ = σ1 · · · σk for 1 ≤ σ1 < · · · <
σk ≤ n, and ασ ∈ IR. The real part g0 :=< g >0= α0e0 = α0 of the
geometric number g is just a real number, since e0 := 1. By definition,
any k-vector can be written as a linear combination of simple k-vectors
or k-blades , [8, p.4].

Given two vectors a, b ∈ IRn, we can decompose the vector a into
components parallel and perpendicular to b, a = a‖ + a⊥, where

a‖ = (a · b)
b

|b|2
= (a · b)b−1,

and a⊥ := a − a‖, see Figure 2.
With the help of (3), we now calculate the geometric product of the

vectors a and b, getting

ab = (a‖ + a⊥)b = a‖ · b + a⊥∧b =
1

2
(ab + ba) +

1

2
(ab − ba) (4)
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a‖ = (a · b)
b

|b|2

= (a · b)b−1.
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Figure 2. Decomposition of a into parallel and perpendicular parts.
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Figure 3. The bivectors a∧b and b∧a.

where the outer product a∧b := 1
2(ab − ba) = a⊥b = −ba⊥ = −b∧a

is the bivector shown in Figure 3. The basic formula (4) shows that
the geometric product ab is the sum of a scalar and a bivector part
which characterizes the relative directions of a and b. If we make the
assumption that a and b lie in the plane of the bivector e12, then we can
write

ab = |a||b|(cos ϕ + I sinϕ) = |a||b|eIϕ, (5)

where I := e12 = e1e2 has the familiar property that

I2 = e1e2e1e2 = −e1e2e2e1 = −e2
1e

2
2 = −1.

Equation (5) is the Euler formula for the geometric multiplication of
vectors.

The definition of the inner product a · b and outer product a∧b can
be easily extended to a ·Br and a∧Br, respectively, where r ≥ 0 denotes
the grade of the r-vector Br:

Definition 1 The inner product or contraction a ·Br of a vector a with
an r-vector Br is determined by

a · Br =
1

2
(aBr + (−1)r+1Bra) = (−1)r+1Br · a.

Definition 2 The outer product a∧Br of a vector a with an r-vector
Br is determined by

a∧Br =
1

2
(aBr − (−1)r+1Bra) = −(−1)r+1Br∧a.
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Note that a · β = β · a = 0 and a∧β = β∧a = βa for the scalar
β ∈ IR. Indeed, we will soon show that a · Br =< aBr >r−1 and
a∧Br =< aBr >r+1 for all r ≥ 1; we have already seen that this is true
when r = 1. There are different conventions regarding the use of the dot
product and contraction [5, p. 35].

One of the most basic geometric algebras is the geometric algebra
G3 of 3 dimensional Euclidean space which we live in. The complete
standard orthonormal basis of this geometric algebra is

G3 = ×3
i=1(1, ei) = span{1, e1, e2, e3, e12, e13, e23, e123}.

Any geometric number g ∈ G3 has the form g = α + v1 + iv2 + βi where
i := e123. Notice that we have expressed the bivector part of g as the
dual of the vector v2. Thus the geometric number g = (α+iβ)+(v1+iv2)
can be expressed as the sum of its complex scalar part (α + iβ) and a
complex vector part (v1 + iv2). Note that the complex scalar part has
all the properties of an ordinary complex number z = x + iy. This
follows easily from the fact that the pseudoscalar i = e123 satisfies i2 =
e123e123 = e23e23 = −1.

We can use the Euler form (5) to see that

a = a(b−1b) = (ab−1)b =
(ab

b2

)

b,

so the geometric quantity ab/|b|2 rotates and dilates the vector b into
the vector a when multiplied by b on the left. Similarly, multiplying b on
right by ba

b2
also rotates and dilates the vector b into the vector a. By re-

expressing this result in terms of the Euler angle ϕ, letting I = ie3, and
assuming that |a| = |b|, we can write a = exp(ie3ϕ)b = b exp(−ie3ϕ).
Even more powerfully, and more generally, we can write

a = exp(Iϕ/2)b exp(−Iϕ/2),

which expresses the 1
2 -angle formula for rotating the vector b ∈ IRn in

the plane of the simple bivector I through the angle ϕ. There are many
more formulas for expressing reflexions and rotations in IRn, or in the
pseudo-euclidean spaces IRp,q, [8], [10].

1.2 Basic algebraic identities

One of the most difficult aspects of learning geometric algebra is com-
ing to terms with a host of unfamiliar algebraic identities. These im-
portant identities can be quickly mastered if they are established in a
careful systematic way. The most important of these identities follows
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easily from the following two trivial algebraic identities involving the
vectors a and b and an r-blade Br where r ≥ 0:

abBr + bBra ≡ (ab + ba)Br − b(aBr − Bra), (6)

and
baBr − aBrb ≡ (ba + ab)Br − a(bBr + Brb). (7)

Whereas these identities are valid for general r-vectors, we state them
here only for a simple r-vector Br, the more general case following by
linear superposition.

In proving the identities below, we use the fact that

bBr =< bBr >r−1 + < bBr >r+1 . (8)

This is easily seen to be true if Br is an r-blade, in which case Br =
b1 · · · br for r orthogonal, and therefore anticommuting, vectors b1, . . . , br.
We then simply decompose the vector b = b‖+b⊥ into parts parallel and
perpendicular to the subspace of IRn spanned by the vectors b1, . . . , br,
and use the anticommutivity of the b′s to show that b · Br = b‖Br =
< b‖Br >r−1 and b∧Br = b⊥Br =< b⊥Br >r+1. This also shows the
useful result that b · Br and b∧Br are blades whenever Br is a blade.

The following basic identity relates the inner and outer products:

a · (b∧Br) = (a · b)Br − b∧(a · Br), (9)

for all r ≥ 0. If r = 0, (9) follows from what has already been established.
If r ≥ 2 and even, (6) and definition (2) implies that

2a · (bBr) = 2(a · b)Br − 2b(a · Br).

Taking the r-vector part of this equation gives (9). If r ≥ 1 and odd,
(7) implies that

2b · (aBr) = 2(a · b)Br − 2a(b · Br)

which implies (9) by again taking the r-vector part of this equation
and simplifying. By iterating (9), we get the important identity for
contraction

a · (b1∧ · · · ∧bn) =
n

∑

i=1

(−1)i+1(a · bi) b1∧ · · · î · · · ∧bn.

Let I = e12···n be the unit pseudoscalar element of the geometric
algebra Gp,q = G(IRp,q). We give here a number of important identities
relating the inner and outer products which will be used later in the
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contexts of projective geometry. For an r-blade Ar, the (p + q − r)-
blade A∗

r := ArI
−1 is called the dual of Ar in Gp,q with respect to the

pseudoscalar I. Note that it follows that I∗ = II−1 = 1 and 1∗ = I−1.
For r + s ≤ p + q, we have the important identity

(Ar∧Bs)
∗ = (Ar∧Bs)I

−1 = Ar · (BsI
−1) = Ar ·B

∗
s = (−1)s(p+q−s)A∗

r ·Bs

(10)

1.3 Geometric algebras of psuedoeuclidean
spaces

All of the algebraic identities discussed for the geometric algebra Gn

hold in the geometric algebra with indefinite signature Gp,q. However,
some care must be taken with respect to the existence of non-zero null
vectors . A non-zero vector n ∈ IRp,q is said to be a null vector if
n2 = n·n = 0. The inverse of a non-null vector v is v−1 = v

v2 , so clearly a

null vector has no inverse. The spacetime algebra G1,3 of IR1,3, also called
the Dirac algebra, has many applications in the study of the Lorentz
transformations used in the special theory of relativity. Whereas non-
zero null vectors do not exist in IRn, there are many non-zero geometric
numbers g ∈ Gn which are null. For example, let g = e1 + e12 ∈ G3, then

g2 = (e1 + e12)(e1 + e12) = e2
1 + e2

12 = 1 − 1 = 0.

Let us consider in more detail the spacetime algebra G1,3 of IR1,3. The
standard orthonormal basis of IR1,3 are the vectors {e1, e2, e3, e4}, where
e2
1 = e2

2 = e2
3 = −1 = −e2

4. The standard basis of the bivectors G2
1,3 of

G1,3 are e14, e24, e34, ie14, ie24, ie34, where i = e1234 is the pseudoscalar of
G1,3. Note that the first 3 of these bivectors have square +1, where as the
duals of these basis bivectors have square −1. Indeed, the subalgebra of
G1,3 generated by E1 = e41, E2 = e42, E3 = e43 is algebraically isomor-
phic to the geometric algebra G3 of space. This key relationship makes
possible the efficient expression of electromagnetism and the theory of
special relativity in one and the same formalisms.

An important class of pseudo-euclidean spaces consists of those that
have neutral signature, Gn,n = Gn,n(IRn,n). The simplest such algebra
is G1,1 with the standard basis {1, e1, e2, e12}, where e2

1 = 1 = −e2
2 and

e2
12 = 1. We shall shortly see that G1,1 is the basic building block for

extending the applications of geometric algebra to affine and projective
and other non-euclidean geometries, and for exploring the structure of
geometric algebras in terms of matrices.
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1.4 Spectral basis and matrices of geometric
algebras

Until now we have only discussed the standard basis of a geometric
algebra G. The standard basis is very useful for presenting the basic rules
of the algebra and its geometric interpretation as a graded algebra of
multivectors of different grades, a k-blade characterizing the direction of
a k-dimensional subspace. There is another basis for a geometric algebra,
called a spectral basis , that is very useful for relating the structure of
a geometric algebra to corresponding isomorphic matrix algebras [15].
Another term that has been applied is spinor basis , but I prefer the
term “spectral basis” because of its deep roots in linear algebra [17].

The key to constructing a spectral basis for any geometric algebra G
is to pick out any two elements u, v ∈ G such that u2 = 1, v−1 exists,
and uv = −vu 6= 0. We then define the idempotents u+ = 1

2 (1 + u) and

u− = 1
2(1 − u) in G, and note that

u2
+ = u+, u2

− = u−, u+u− = u−u+ = 0, and u+ + u− = 1.

We say that u± are mutually annihiliating idempotents which partition
1. Also vu+ = u−v, from which it follows that v−1u+ = u−v−1 .

Using these simple algebraic properties, we can now factor out a 2×2
matrix algebra from G. Adopting matrix notation, first note that

(

1 v
)

u+

(

1
v−1

)

=
(

u+ vu+

)

(

1
v−1

)

= u+ + u− = 1.

For any element g ∈ G, we have

g =
(

1 v
)

u+

(

1
v−1

)

g
(

1 v
)

u+

(

1
v−1

)

=
(

1 v
)

u+

(

g gv
v−1g v−1gv

)

u+

(

1
v−1

)

. (11)

The expression [g] := u+

(

g gv
v−1g v−1gv

)

u+ is called the matrix de-

composition of g with respect to the elements {u, v} ⊂ G. To see that
the mapping g 7→ [g] gives a matrix isomorphism, in the sense that
[g + h] = [g] + [h] and [gh] = [g][h] for all g, h ∈ G, it is obvious that we
only need to check the multiplicative property. We find that

[g][h] = u+

(

g gv
v−1g v−1gv

)

u+

(

h hv
v−1h v−1hv

)

u+
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= u+

(

gu+h + gvu+v−1h gu+hv + gvu+v−1hv
v−1gu+h + v−1gvu+v−1h v−1gu+hv + v−1gvu+v−1hv

)

u+

= u+

(

gh ghv
v−1gh v−1ghv

)

u+ = [gh].

To fully understand the nature of this matrix isomorphism, we need
to know about the nature of the entries of [g] in (11). We will analyse
the special case where v2 ∈ IR, although the relationship is valid for
more general v. In this case, the entries of [g] can be decomposed in
terms of conjugations with respect to the elements u and v. Let a ∈ G
for which a−1 exists. The a-conjugate ga of the element g ∈ G is defined
by ga = aga−1.

We shall use u- and v-conjugates to decompose any element g into the
form

g = G1 + uG2 + v(G3 + uG4) (12)

where Gi ∈ CG({u, v}), the subalgebra of all elements of G which com-
mute with the subalgebra generated by {u, v}. It follows that G =
CG({u, v}) ⊗ {u, v} or G ≡ M2(CG({u, v})). This means that G is iso-
morphic to a 2 × 2 matrix algebra over CG({u, v}).

We first decompose g into the form

g =
1

2
(g + gu) + v[

v−1

2
(g − gu)] = g1 + vg2

where g1, g2 ∈ CG(u), the geometric subalgebra of G of all elements which
commute with the element u. By further decomposing g1 and g2 with
respect to the v-conjugate, we obtain the decomposition

g = G1 + uG2 + v(G3 + uG4)

where each Gi ∈ CG({u, v}). Specifically, we have

G1 =
1

2
(g1 + gv

1) =
1

4
(g + ugu + vgv−1 + vuguv−1)

G2 =
u

2
(g1 − gv

1) =
u

4
(g + ugu − vgv−1 − vuguv−1)

G3 =
1

2
(g2 + gv

2) =
v−1

4
(g − ugu + vgv−1 − vuguv−1)

G4 =
u

2
(g2 − gv

2) =
uv−1

4
(g − ugu − vgv−1 + vuguv−1).

Using the decomposition (12) of g, we find the 2 × 2 matrix decom-
position (11) of g over the module CG({u, v}),

[g] := u+

(

g gv
v−1g v−1gv

)

u+ = u+

(

G1 + G2 v2(G3 − G4)
G3 + G4 G1 − G2

)

(13)
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where Gi ∈ CG({u, v}) for 1 ≤ i ≤ 4.
For example, for g ∈ G3 and u = e1, v = e12 = −v−1, we write

g = (z1 + uz2) + v(z3 + uz4), where zj = xj + iyj for i = e123 and
1 ≤ j ≤ 4. Noting that u±u = uu± = ±u± and u±v = vu∓, and
substituting this complex form of g into the above equation gives

g =
(

1 v
)

u+

(

g gv
v−1g v−1gv

)

u+

(

1
v−1

)

=
(

1 v
)

u+

(

z1 + z2 z4 − z3

z4 + z3 z1 − z2

)(

1
v−1

)

.

We say that

[g] = u+

(

z1 + z2 z4 − z3

z4 + z3 z1 − z2

)

is the matrix decomposition of g ∈ G3 over the complex numbers, IC =
{x + iy} where i = e123. It follows that

G3 ≡ M2(IC).

There are many decompositions of Clifford geometric algebras into
isomorphic matrix algebras. As shown in the example above, a matrix
decomposition of geometric algebra is equivalent to selecting a spectral
basis, in this case

(

1
v

)

u+

(

1 v−1
)

=

(

u+ v−1u−

vu+ u−

)

,

as opposed to the standard basis for the algebra. The relative position
of the elements in the spectral basis, written as a matrix above, gives
the isomorphism between the geometric algebra and the matrix algebra.

There is a matrix decomposition of the geometric algebra Gp+1,q+1

that is very useful. For this decomposition we let u = ep+1ep+q+2, so
that the bivector u has the property that u2 = 1, and let v = ep+1. We
then have the idempotents u± = 1

2(1 ± u), satisfying vu± = u∓v, and
giving the decomposition

Gp+1,q+1 = G1,1 ⊗ Gp,q ≡ M2(Gp,q) (14)

for G1,1 = gen{ep+1, ep+q+2} and Gp,q= gen{e1, . . . , ep, ep+2, . . . , ep+q+1}.

2. Projective Geometries

Leonardo da Vinci (1452–1519) was one of the first to consider the
problems of projective geometry. However, projective geometry was not
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formally developed until the work “Traité des propriés projectives des
figure” of the French mathematician Poncelet (1788-1867), published in
1822. The extrordinary generality and simplicity of projective geometry
led the English mathematician Cayley to exclaim: “Projective Geometry
is all of geometry” [18].

The projective plane is almost identical to the Euclidean plane, ex-
cept for the addition of ideal points and an ideal line at infinity. It seems
natural, therefore, that in the study of analytic projective geometry the
coordinate systems of Euclidean plane geometry should be almost suf-
ficient. It is also required that these ideal objects at infinity should be
indistinquishable from their corresponding ordinary objects, in this case
ordinary points and ordinary lines. The solution to this problem is the
introduction of “homogeneous coordinates”, [6, p. 71]. The introduc-
tion of the tools of homogeneous coordinates is accomplished in a very
efficient way using geometric algebra [9]. While the definition of geomet-
ric algebra does indeed involve a metric, that fact in no way prevents
it from being used as a powerful tool to solve the metric-free results
of projective geometry. Indeed, once the objects of projective geometry
are identified with the corresponding objects of linear algebra, the whole
of the machinery of geometric algebra applied to linear algebra can be
carried over to projective geometry.

Let IRn+1 be an (n + 1)-dimensional euclidean space and let Gn+1

be the corresponding geometric algebra. The directions or rays of non-
zero vectors in IRn+1 are identified with the points of the n-dimensional
projective plane Πn. More precisely, we write

Πn ≡ IRn+1/IR∗

where IR∗ = IR − {0}. We thus identify points, lines, planes, and higher
dimensional k-planes in Πn with 1, 2, 3, and (k + 1)-dimensional sub-
spaces Sk+1 of IRn+1, where k ≤ n. To effectively apply the tools of
geometric algebra, we need to introduce the basic operations of meet
and join.

2.1 The Meet and Join Operations

The meet and join operations of projective geometry are most easily
defined in terms of the intersection and union of the linear subspaces
which name the objects in Πn. Each r-dimensional subspace Ar is de-
scribed by a non-zero r-blade Ar ∈ G(IRn+1). We say that an r-blade
Ar 6= 0 represents, or is a representant of an r-subspace Ar of IRn+1 if
and only if

Ar = {x ∈ IRn+1| x∧Ar = 0}. (15)
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The equivalence class of all nonzero r-blades Ar ∈ G(IRn+1) which define
the subspace Ar is denoted by

{Ar}ray := {tAr | t ∈ IR, t 6= 0}. (16)

Evidently, every r-blade in {Ar}ray is a representant of the subspace
Ar. With these definitions, the problem of finding the meet and join is
reduced to the problem of finding the corresponding meet and join of
the (r + 1)- and (s + 1)-blades in the geometric algebra G(IRn+1) which
represent these subspaces.

Let Ar, Bs and Ct be non-zero blades representing the three subspaces
Ar, Bs and Ct, respectively. Following [15], we say that

Definition 3 The t-blade Ct = Ar ∩ Bs is the meet of Ar and Bs

if there exists a complementary (r − t)-blade Ac and a complementary
(s − t)-blade Bc with the property that Ar = Ac∧Ct, Bs = Ct∧Bc, and
Ac∧Bc 6= 0.

It is important to note that the t-blade Ct ∈ {Ct}ray is not unique
and is defined only up to a non-zero scalar factor, which we choose at
our own convenience. The existence of the t-blade Ct (and the corre-
sponding complementary blades Ac and Bc) is an expression of the basic
relationships that exists between linear subspaces.

Definition 4 The (r + s − t)-blade D = Ar ∪Bs, called the join of Ar

and Bs is defined by D = Ar ∪ Bs = Ar∧Bc.

Alternatively, since the join Ar ∪ Bs is defined only up to a non-zero
scalar factor, we could equally well define D by D = Ac∧Bs. We use the
symbols ∩ intersection and ∪ union from set theory to mark this unusual
state of affairs. The problem of “meet” and “join” has thus been solved
by finding the direct sum and intersection of linear subspaces and their
(r + s − t)-blade and t-blade representants.

Note that it is only in the special case when Ar ∩Bs = 0 that the join
can be considered to reduce to the outer product. That is

Ar ∩ Bs = 0 ⇔ Ar ∪ Bs = Ar∧Bs.

In any case, once the join J := Ar ∪ Bs has been found, it can be used
to find the meet

Ar ∩ Bs = Ar · [Bs · J ] = [JJAr] · [Bs · J ] = [(Ar · J)∧(Bs · J)] · J (17)

In the case that J = I−1, we can express this last relationship in terms
of the operation of duality defined in (10), Ar ∩ Bs = (A∗

r∧B∗
s )∗ =
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(A∗
r∪B∗

s )∗ which is DeMorgan’s formula. It must always be remembered
that the “equalities” in these formulas only mean “up to a non-zero real
number”. While the positive definite metric of IRn+1 is irrelevant to the
definition of the meet and join of subspaces, the formula (17) holds only
in IRn+1.

A slightly modified version of this formula will hold in any non-
degenerate pseudo-euclidean space IRp,q and its corresponding geometric
algebra Gp,q := G(IRp,q), where p+ q = n+1. In this case, after we have
found the join J = Ar ∪ Bs, we first find any blade J of the same step
which satisfies the property that J · J = 1. The blade J is called a
reciprocal blade of the blade J in the geometric algebra Gp,q. The meet
Ar ∩ Bs may then be defined by

Ar∩Bs = Ar ·[Bs ·J ] = [(Ar ·J)·J ]·[Bs ·J ] = {[(Ar ·J)∧(Bs ·J)]}·J (18)

The meet and join operations formulated in geometric algebra can
be used to efficiently prove the many famous theorems of projective
geometry [9]. See also Geometric-Affine-Projective Computing at the
website [12].

2.2 Incidence, Projectivity and Colineation

Let J ∈ Gk+1
p,q be a (k+1)-blade representing a projective k-dimensional

subplane in Πn where k ≤ n. A point (ray) x ∈ Πn is said to be incident
to J if and only if x∧J = 0. Since J is a (k + 1)-blade, we can find
vectors a1, . . . , ak+1 ∈ IRp,q such that J = a1∧ · · · ∧ak+1. Projectively
speaking, this means we can find k + 1 non-co(k − 1)planar points ai in
the k-projective plane J .

Now let J be a reciprocal blade to J with the property that J ·J = 1.
With the help of J , we can define a determinant function or bracket
[· · · ]J on the projective k-plane J . Let b1, . . . , bk+1 be (k + 1) points
incident to J ,

[b1, · · · , bk+1]J := (b1∧ · · · ∧bk+1) · J. (19)

The bracket [b1, · · · , bk+1]J 6= 0 iff the points bi are not co-(k−1)planar.
We now give the definitions necessary to complete the translation

of real projective geometry into the language of multilinear algebra as
formulated in geometric algebra.

Definition 5 A central perspectivity is a transformation of the points
of a line onto the points of a line for which each pair of corresponding
points is collinear with a fixed point called the center of perspectivity.
See Figure 4.



Clifford Geometric Algebras 15

The key idea in the analytic expression of projective geometry in ge-
ometric algebra is that to each projectivity in Πn there corresponds
a non-singular linear transformation2 T : IRp,q −→ IRp,q. It is clear
that each projectivity of points on Πn induces a corresponding projec-
tive collineation of lines, of planes, and higher dimensional projective
k-planes. The corresponding extension of the linear transformation T
from IRp,q to the whole geometric algebra Gp,q which accomplishes this
is called the outermorphism T : Gp,q −→ Gp,q, which is defined in terms
of T by the properties:

T(1) := 1, T(x) = T (x), T(x1∧ · · · ∧xk) := T (x1)∧ · · · ∧T (xk) (20)

for each 2 ≤ k ≤ p + q, and then extended linearly to all elements of
Gp,q. Outermorphisms in geometric algebra, first studied in [16], provide
the backbone for the application of geometric algebra to linear algebra.
Since in everything that follows we will be using the outermorphism T

defined by T , we will drop the boldface notation and simply use the
same symbol T for both the linear transformation and its extension to
an outermorphism T.

Figure 4. A central perspectivity from the point o.

2Unique up to a non-zero scalar factor.
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Definition 6 A projective transformation or projectivity is a transfor-
mation of points of a line onto the points of a line which may be expressed
as a finite product of central perspectivities.

We can now easily prove

Theorem 1 There is a one-one correspondence between non-singular
outermorphisms T : Gp,q −→ Gp,q, and projective collineations on Πn

taking n + 1 non-co(n − 1)planar points in Πn into n + 1 non-co(n-
1)planar points in Πn.

Proof: Let a1, . . . , an+1 ∈ Πn be n+1 non-co(n-1)planar points. Since
they are non-co(n-1)planar, it follows that a1∧ · · · ∧an+1 6= 0. Suppose
that bi = T (ai) is a projective transformation between these points for
1 ≤ i ≤ n + 1. The corresponding non-singular outermorphism is de-
fined by considering T to be a linear transformation on the basis vectors
a1, . . . , an+1 of IRp,q. Conversely, if a non-singular outermorphism is
specified on IRp,q it clearly defines a unique projective collineation on
Πn, which we denote by the same symbol T .

All of the theorems on harmonic points and cross ratios of points on
a projective line follow easily from the above definitions and properties
[9], but we will not prove them here. For what follows, we will need two
more definitions:

Definition 7 A nonidentity projectivity of a line onto itself is elliptic,
parabolic, or hyperbolic as it has no, one, or two fixed points, respec-
tively. More generally, we will say that a nonidentity projectivity of Πn

is elliptic, parabolic, or hyperbolic, if whenever it fixes a line in Πn,
then the restriction to each such line is elliptic, parabolic, or hyperbolic,
respectively.

Let a, b ∈ Πn be distinct points so that a∧b 6= 0. If T is a projectivity
of Πn and T (a∧b) = λa∧b for λ ∈ IR∗, then the characteristic equation
of T restricted to the subspace a∧b,

[(λ − T )(a∧b)] · a∧b = 0 (21)

will have 0, 1 or 2 real roots, according to whether T has 0, 1 or 2 real
eigenvectors, [15], [8, p.73], which correspond directly to fixed points.

Definition 8 A nonidentity projective transformation T of a line onto
itself is an involution if T 2 = identity.

2.3 Conics and Polars

Let a1, a2, . . . , an+1 ∈ IRp,q represent n + 1 = p + q linearly indepen-
dent vectors in IRp,q. This means that I = a1∧a2∧ · · · ∧an+1 6= 0. As an
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element in the projective space Πn, I represents the projective n-plane
determined by the n + 1 non-co(n − 1)planar points a1, . . . , an+1. Rep-
resenting the points of Πn by homogeneous vectors x ∈ IRp,q, makes it
easy to study the quadric hypersurface (conic) Q in Πn defined by

Q := {x| x ∈ IRp+q, x 6= 0, and x2 = 0}. (22)

Definition 9 The polar of the k-blade A ∈ Gk
p,q is the (n+1−k)-blade

PolQ(A) defined by
PolQ(A) := AI−1 = A∗ (23)

where A∗ is the dual of A in the geometric algebra Gp,q.

The above definition shows that polarization in the quadric hypersurface
Q and dualization in the geometric algebra Gp,q are identical operations.

If x ∈ Q, it follows that

x∧PolQ(x) = x∧(xI−1) = x2I−1 = 0. (24)

This tells us that PolQ(x) is the hyperplane which is tangent to Q at
the point x, [12]. We will meet something very similar when we discuss
the horosphere in section 5.

3. Affine and other geometries

In this section, we explore in what sense “projective geometry is all
of geometry” as exclaimed by Cayley. In order to keep the discussion as
simple as possible, we will discuss the relationship of the 2 dimensional
projective plane to other 2 dimensional planar geometries, [6].

We begin with affine geometry of the plane. Let Π2 be the real pro-
jective plane, and T (Π2) the group of all projective transformations on
Π2. Let a line L ∈ Π2 (a degenerate conic) be picked out as the absolute
line, or the line at infinity.

Definition 10 The affine plane A2 consists of all points of the projec-
tive plane Π2 with the points on the absolute line deleted. The projective
transformations leaving L fixed, restricted to the real affine plane, are
real affine transformations. The study of A2 and the subgroup of real
affine transformations T {A2} is real plane affine geometry.

If we now fix an elliptic involution, called the absolute involution, on
the line L, then a real affine transformation which leaves the absolute
involution invariant is called a similarity transformation.

Definition 11 The study of the group of similarity transformations on
the affine plane is similarity geometry.
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An affine transformation which leaves the area of all triangles invariant
is called an equiareal transformation.

Definition 12 The study of the affine plane under equiareal transfor-
mations is equiareal geometry.

A euclidean transformation on the affine plane is an affine transforma-
tion which is both a similarity and an equiareal transformation. Finally,
we have

Definition 13 The study of the affine plane under euclidean transfor-
mations is euclidean geometry.

In our representation of Πn in a geometric algebra Gp,q where n+1 =
p + q, a projectivity is represented by a non-singular linear transforma-
tion. Thus, the group of projectivities becomes just the general linear
group of all non-singular transformations on IRp,q extended to outermor-
phisms on Gp,q. Generally, we may choose to work in a euclidean space
IRn+1, rather than in the pseudo-euclidean space IRp,q, [9], [12]. We have
chosen here to work in the more general geometric algebra Gp,q, because
of the more direct connection to the study of a particular nondegenerate
quadric hypersurface or conic in IRp,q.

We still have not mentioned two important classes of non-euclidean
plane geometries, hyperbolic plane geometry and elliptic plane geometry
, and their relation to projective geometry. Unlike euclidean geometry,
where we picked out a degenerate conic called the absolute line or line
at infinity, the study of these other types of plane geometries involves
the picking out of a nondegenerate conic called the absolute conic .

For plane hyperbolic geometry, we pick out a real non-degenerate
conic in Π2, called the absolute conic, and define the points interior to
the absolute to be ordinary , those points on the absolute are ideal , and
those points exterior to the absolute are ultraideal [6, p.230].

Definition 14 A real projective plane from which the absolute conic
and its exterior have been deleted is a hyperbolic plane. The projec-
tive collineations leaving the absolute fixed and carrying interior points
onto interior points, restricted to the hyperbolic plane, are hyperbolic
isometries. The study of the hyperboic plane and hyperbolic isometries
is hyperbolic geometry.

Hyperbolic geometry has been studied extensively in geometric algebra
by Hongbo Li in [3, p.61-85], and applied to automatic theorem proving
in [3, p.110-119], [5, p.69-90].

For plane elliptic geometry, we pick out an imaginary nondegenerate
conic in Π2 as the absolute conic. Since there are no real points on
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this conic, the points of elliptic geometry are the same as the points in
the real projective plane Π2. A projective collineation which leaves the
absolute conic fixed (whose points are in the complex projective plane)
is called an elliptic isometry .

Definition 15 The real projective plane Π2 is the elliptic plane. The
study of the elliptic plane and elliptic isometries is elliptic geometry.

In the next section, we return to the study of affine geometries of
higher dimensional pseudo-euclidean spaces. However, we shall not
study the formal properties of these spaces. Rather, our objective is to
efficiently define the horosphere of a pseudo-euclidean space, and study
some of its properties.

4. Affine Geometry of pseudo-euclidean space

We have seen that a projective space can be considered to be an affine
space with idealized points at infinity [18]. Since all the formulas for meet
and join remain valid in the pseudo-euclidean space IRp,q, using (18), we
define the n = (p+q)-dimensional affine plane Ae(IR

p,q) of the null vector
e = 1

2 (σ+η) in the larger pseudo-euclidean space IRp+1,q+1 = IRp,q⊕IR1,1,
where IR1,1 = span{σ, η} for σ2 = 1 = −η2. Whereas, effectively, we
are only extending the euclidean space IRp,q by the null vector e, it
is advantageous to work in the geometric algebra Gp+1,q+1 of the non-
degenerate pseudo-euclidean space IRp+1,q+1. We give here the important
properties of the reciprocal null vectors e = 1

2(σ + η) and e = σ − η that
will be needed later, and their relationship to the hyperbolic unit bivector
u := ση.

e2 = e2 = 0, e·e = 1, u = e∧e = σ∧η, u2 = 1. (25)

The affine plane Ap,q
e := Ae(IR

p,q) is defined by

Ae(IR
p,q) = {xh = x + e| x ∈ IRp,q } ⊂ IRp+1,q+1, (26)

for the null vector e ∈ IR1,1. The affine plane Ae(IR
p,q) has the nice

property that x2
h = x2 for all xh ∈ Ae(IR

p,q), thus preserving the metric
structure of IRp,q. We can restate definition (26) of Ae(IR

p,q) in the form

Ae(IR
p,q) = {y| y ∈ IRp+1,q+1 , y ·e = 1 and y ·e = 0 } ⊂ IRp+1,q+1.

This form of the definition is interesting because it brings us closer to
the definition of the n = (p + q)-dimensional projective plane .

The projective n-plane Πn can be defined to be the set of all points
of the affine plane Ae(IR

p,q), taken together with idealized points at
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infinity. Each point xh ∈ Ae(IR
p,q) is called a homogeneous representant

of the corresponding point in Πn because it satisfies the property that
xh ·e = 1. To bring these different viewpoints closer together, points in
the affine plane Ae(IR

p,q) will also be represented by rays in the space

Arays
e (IRp,q) = {{y}ray | y ∈ IRp+1,q+1, y ·e = 0, y ·e 6= 0 } ⊂ IRp+1,q+1.

(27)
The set of rays Arays

e (IRp,q) gives another definition of the affine n-plane,
because each ray {y}ray ∈ Arays

e (IRp,q) determines the unique homoge-
neous point

yh =
y

y ·e
∈ Ae(IR

p,q).

Conversely, each point y ∈ Ae(IR
p,q) determines a unique ray {y}ray in

Arays
e (IRp,q). Thus, the affine plane of homogeneous points Ae(IR

p,q) is
equivalent to the affine plane of rays Arays

e (IRp,q).
Suppose that we are given k-points ah

1 , ah
2 , . . . , ah

k ∈ Ae(IR
p,q) where

each ah
i = ai + e for ai ∈ IRp,q. Taking the outer product or join of these

points gives the projective (k − 1)-plane Ah ∈ Πn. Expanding the outer
product gives

Ah = ah
1∧ah

2∧ . . .∧ah
k = ah

1∧(ah
2 − ah

1)∧ah
3∧ . . .∧ah

k

= ah
1∧(ah

2 − ah
1)∧(ah

3 − ah
2)∧ah

4∧ . . .∧ah
k = . . .

= ah
1∧(a2 − a1)∧(a3 − a2)∧ . . .∧(ak − ak−1),

or
Ah = ah

1∧ah
2∧ . . .∧ah

k = a1∧a2∧ . . .∧ak+

e∧(a2 − a1)∧(a3 − a2)∧ . . .∧(ak − ak−1). (28)

Whereas (28) represents a (k − 1)-plane in Πn, it also belongs to the
affine (p, q)-plane Ap,q

e , and thus contains important metrical informa-
tion. Dotting this equation with e, we find that

e·Ah = e·(ah
1∧ah

2∧ . . .∧ah
k) = (a2 − a1)∧(a3 − a2)∧ . . .∧(ak − ak−1).

This result motivates the following

Definition 16 The directed content of the (k − 1)-simplex

Ah = ah
1∧ah

2∧ · · · ∧ah
k

in the affine (p, q)-plane is given by

e·Ah

(k − 1)!
=

e·(ah
1∧ah

2∧ . . .∧ah
k)

(k − 1)!

=
(a2 − a1)∧(a3 − a2)∧ . . .∧(ak − ak−1)

(k − 1)!
.
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4.1 Example

Many incidence relations can be expressed in the affine plane Ae(IR
p,q)

which are also valid in the projective plane Πn, [3, pp.263]. We will only
give here the simplest example.

Given are 4 coplanar points ah, bh, ch, dh ∈ Ae(IR
2). The join and

meet of the lines ah∧bh and ch∧dh are given, respectively, by (ah∧bh) ∪
(ch∧dh) = ah∧bh∧ch, and using (18),

(ah∧bh) ∩ (ch∧dh) = [I ·(ah∧bh)]·(ch∧dh)

where e1, e2 are the orthonormal basis vectors of IR2, and I = e2∧e1∧e.
Carrying out the calculations for the meet and join in terms of the
bracket determinant (19), we find that

(ah∧bh) ∪ (ch∧dh) = [ah, bh, ch]II = det{a, b}I (29)

where I = e1∧e2∧e and det{a, b} := (a∧b) · (e21), and

(ah∧bh) ∩ (ch∧dh) = det{c − d, b − c}ah + det{c − d, c − a}bh. (30)

Note that the meet (30) is not, in general, a homogeneous point.
Normalizing (30), we find the homogeneous point ph ∈ Ae(IR

2)

ph =
det{c − d, b − c}ah + det{c − d, c − a}bh

det{c − d, b − a}

which is the intersection of the lines ah∧bh and ch∧dh. The meet can
also be solved for directly in the affine plane by noting that

ph = αpah + (1 − αp)bh = βpch + (1 − βp)dh

and solving to get αp = [bh, ch, dh]I/[bh − ah, ch, dh]I . Other simple
examples can be found in [15].

5. Conformal Geometry and the Horosphere

The conformal geometry of a pseudo-Euclidean space can be linearized
by considering the horosphere in a pseudo-Euclidean space of two dimen-
sions higher. We begin by defining the horosphere Hp,q

e in IRp+1,q+1 by
moving up from the affine plane Ap,q

e := Ae(IR
p,q).

5.1 The horosphere

Let Gp+1,q+1 = gen(IRp+1,q+1) be the geometric algebra of IRp+1,q+1,
and recall the definition (26) of the affine plane Ap,q

e := Ae(IR
p,q) ⊂
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IRp+1,q+1. Any point y ∈ IRp+1,q+1 can be written in the form y =
x + αe + βe, where x ∈ IRp,q and α, β ∈ IR.

The horosphere Hp,q
e is most directly defined by

Hp,q
e := {xc = xh + βe | xh ∈ Ap,q

e and x2
c = 0.} (31)

With the help of (25), the condition that

x2
c = (xh + βe)2 = x2 + 2β = 0

gives us immediately that β := − x2

2 . Thus each point xc ∈ Hp,q
e has the

form

xc = xh −
x2

h

2
e = x + e −

x2

2
e =

1

2
xhexh. (32)

The last equality on the right follows from

1

2
xhexh =

1

2
[(xh ·e)xh + (xh∧e)xh] = xh −

1

2
x2

he.

From (32), we easily calculate

xc · yc = (x + e −
x2

2
e) · (y + e −

y2

2
e) =

x · y −
y2

2
−

x2

2
= −

1

2
(x − y)2,

where (x − y)2 is the square of the pseudo-euclidean distance between
the conformal representants xc and yc. We see that the pseudo-euclidean
structure is preserved in the form of the inner product xc · yc on the
horosphere.

Just as xh ∈ Ap,q
e is called the homogeneous representant of x ∈ IRp,q,

the point xc is called the conformal representant of both the points xh ∈
Ap,q

e and x ∈ IRp,q. The set of all conformal representants Hp,q :=
c(IRp,q) is called the horosphere . The horosphere Hp,q is a non-linear
model of both the affine plane Ap,q

e and the pseudo-euclidean space IRp,q.
The horosphere Hn for the Euclidean space IRn was first introduced by
F.A. Wachter, a student of Gauss, [7], and has been recently finding
many diverse applications [3], [5].

The set of all null vectors y ∈ IRp+1,q+1 make up the null cone

N := {y ∈ IRp+1,q+1| y2 = 0}.

The subset of N containing all the representants y ∈ {xc}ray for any
x ∈ IRp,q is defined to be the set

N0 = {y ∈ N | y ·e 6= 0} = ∪x∈IRp,q {xc}ray,
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and is called the restricted null cone. The conformal representant of a
null ray {z}ray is the representant y ∈ {z}ray which satisfies y ·e = 1.

The horosphere Hp,q is the parabolic section of the restricted null
cone,

Hp,q = {y ∈ N0 | y ·e = 1},

see Figure 5. Thus Hp,q has dimension n = p + q. The null cone N is
determined by the condition y2 = 0, which taking differentials gives

y ·dy = 0 ⇒ xc ·dy = 0 , (33)

where {y}ray = {xc}ray. Since N0 is an (n + 1)-dimensional surface,
then (33) is a condition necessary and sufficient for a vector v to belong
to the tangent space to the restricted null cone T (N0) at the point y

v ∈ T (N0) ⇔ xc ·v = 0 . (34)

It follows that the (n +1)-pseudoscalar Iy of the tangent space to N0 at
the point y can be defined by Iy = Ixc where I is the pseudoscalar of
IRp+1,q+1. We have

xc ·v = 0 ⇔ 0 = I(xc ·v) = (Ixc)∧v = Iy∧v, (35)

a relationship that we have already met in (24).

5.2 H-twistors

Let us define an h-twistor to be a rotor Sx ∈ Spinp+1,q+1

Sx := 1 +
1

2
xe = exp (

1

2
xe). (36)

An h-twistor is an equivalence class of two “twistor” components from
Gp,q, that have many twistor-like properties. The point xc is generated
from 0c = e by

xc = SxeSx
†, (37)

and the tangent space to the horosphere at the point xc is generated
from dx ∈ IRp,q by

dxc = dSx e Sx
† + Sx e dSx

† = Sx(ΩS ·e)Sx
† = SxdxSx

†. (38)

It also keeps unchanged the “point at infinity” e

e = SxeSx
†.

H-twistors were defined and studied in [15], and more details can be
found therein.
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Figure 5. The restricted null cone and representations of the point x in affine space
and on the horosphere.

Since the group of isometries in N0 is a double covering of the group of
conformal transformations Conp,q in IRp,q, and the group Pinp+1,q+1 is a
double covering of the group of orthogonal transformations O(p+1, q+1),
it follows that Pinp+1,q+1 is a four-fold covering of Conp,q, [10, p.220],
[14, p.146].

5.3 Matrix representation

We have seen in (14) that the algebra Gp+1,q+1 = Gp,q⊗G1,1 is isomor-
phic to a 2 × 2 matrix algebra over the module Gp,q. This identification
makes possible a very elegant treatment of the so-called Vahlen matrices
[10, 11, 4, 14].

Recall in section 1.4, that the idempotents u± = 1
2(1 ± u) of the

algebra G1,1 satisfy the properties

u+ + u− = 1 , u+ − u− = u , u+u− = 0 = u−u+ , σu+ = u−σ ,

where

u := e∧e , u+ =
1

2
ee , u− =

1

2
ee ,

and

ue = e = −eu , eu = e = −ue , σu+ = e , 2σu− = e .
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Each multivector G ∈ Gp+1,q+1 can be written in the form

G =
(

1 σ
)

u+[G]

(

1
σ

)

= Au+ + Bu+σ + C∗u−σ + D∗u− (39)

where

[G] ≡

(

A B
C D

)

for A,B,C,D ∈ Gp,q.

The matrix [G] denotes the matrix corresponding to the multivector G.
The operation of reversion of multivectors translates into the following

transpose-like matrix operation:

if [G] =

(

A B
C D

)

then [G]† := [G†] =

(

D B
C A

)

where A = A∗† is the Clifford conjugation, [15].

5.4 Möbius transformations

We have seen in (37) that the point xc ∈ Hp,q can be written in the

form, xc = SxeSx
†. More generally, any conformal transformation f(x)

can be represented on the horosphere by

f(x)c = Sf(x) e Sf(x)
†. (40)

Using the matrix representation (39), for a general multivector G ∈
Gp+1,q+1 we find that

[GeG†] =

(

A B
C D

)(

0 0
1 0

)(

D B
C A

)

=

(

B
D

)

(

D B
)

(41)

where

[e] =

(

0 0
1 0

)

, [G] ≡

(

A B
C D

)

, [G]† =

(

D B
C A

)

.

The relationship (41) suggests defining the conformal h-twistor of the
multivector G ∈ Gp+1,q+1 to be

[G]c :=

(

B
D

)

,
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which may also be identified with the multivector Gc := Ge = Bu+ +
D∗e. The conjugate of the conformal h-twistor is then naturally defined
by

[G]c
† :=

(

D B
)

.

Conformal h-twistors give us a powerful tool for manipulating the confor-
mal representant and conformal transformations much more efficiently.
For example, since xc in (37) is generated by the conformal h-twistor
[Sx]c, it follows that

[xc] = [Sx]c[Sx]c
† =

(

x
1

)

(

1 −x
)

=

(

x −x2

1 −x

)

.

We can now write the conformal transformation (40) in its spinorial
form,

[Sf(x)]c =

(

f(x)
1

)

.

Since Tx = RSx for the constant vector R ∈ Pinp+1,q+1 , its spinorial
form is given by

[Tx]c = [R][Sx]c =

(

A B
C D

)(

x
1

)

=

(

Ax + B
Cx + D

)

=

(

M
N

)

,

where

[R] =

(

A B
C D

)

, for constants A,B,C,D ∈ Gp,q.

It follows that

[Tx] =

(

M
N

)

=

(

f(x)
1

)

H ⇒ H = N and f(x) = MN−1. (42)

The beautiful linear fractional expression for the conformal transfor-
mation f(x),

f(x) = (Ax + B)(Cx + D)−1 (43)

is a direct consequence of (42), [15].
The linear fractional expression (43) extends to any dimension and

signature the well-known Möbius transformations in the complex plane.
The components A,B,C,D of [R] are subject to the condition that R ∈
Pinp+1,q+1. Conformal h-twistors are a generalization to any dimension
and any signature of the familiar 2-component spinors over the complex
numbers, and the 4-component twistors. Penrose’s twistor theory [13]
has been discussed in the framework of Clifford algebra by a number of
authors, for example see [1], [2, pp75-92].
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[6] W.T. Fishback, Projective and Euclidean Geometry, 2nd, John Wiley & Sons,
Inc., New York, 1969.
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