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Mathematics of Radar

Bill Moran

1. Radar Fundamentals

1.1. Introduction

Radar is now used in many applications — meteorology, mapping, air traffic control, ship
and aircraft navigation, altimeters on aircraft, police speeding control, etc. It is now being
used in the form of ground penetrating radar for mineral exploration and delineation and for
land-mine detection. Of course, its primary role is in defence. The theory of radar is well
developed and has many interesting and difficult mathematical problems.

The aim of these notes is to provide a description of radar and its theory accessible to a
mathematical audience with the hope of stimulating interest in the problems. Often mathe-
matical treatments of radar ignore the problems of implementation. I intend to go as far into
the engneering of a radar system as is necesssary to provide an understanding of these issues.
In the first section we shall describe the operation of a radar system at a relatively detailed
level. Later sections will cover some of the mathematics arising in radar design and use.

1.2. A Simple Radar System

The key references for this section are [3, 14, 16]. Typically radar systems comprise a
transmitter and receiver, though recently passive radar systems relying on the ambient HF and
VHF radiation have been built and made operational. We shall not consider such systems. We
shall also assume that the radar transmitter and receiver are collocated (monostatic), again the
usual situation. Nonetheless there is much current interest in bistatic and multistatic radars

The most important issues in designing a radar system are as follows.

1. What is its purpose? How it will be used significantly changes the method of process-
ing the data. Some radars are used to detect targets, others to track them, others to
produce images. Radars used to check the speeds of vehicles, for example, need to be
able to measure the doppler accurately in a small range of velocities.

2. The next most serious issue is that of noise. Returns from relatively distant targets
have very small amounts of energy which can be swamped by the noise generated
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within the receiver. Methods of maximizing the post processing signal-to-noise ratio
are crucially important in radar systems.

3. As well as noise, a radar system will receive returns from objects which are not impor-
tant for the operational purpose of the radar. For example, shipborn radars, typically
receive much of the return energy from the sea surface, particularly if it is rough. This
can mask a more important return. Such artefacts are collectively called “clutter”.
Much work has been done on extraction of signals of importance from the clutter.

4. The power available to the transmitter is a key factor, particularly in reducing noise
problems. Evidently this dictates much about the size of the transmitter and the type
of electronics to be used.

5. The resolution needed in both doppler and range and the range of values of these
parameters for the targets of importance are significant factors in the design of a radar.

6. Of increasing importance in a defence environment are issues around jamming and
other electronic counter-measures to obscure or mask a target, or otherwise render a
radar system ineffective. Radar system developers have to be ready to counter such
interventions.

A simple radar system is sketched in Figure 1.
At a general level, the various parts of a radar system are:

1. The antenna — usually serving the dual role of transmitting and receiving signals.
The shape of the antenna dictates the shape of the beam that is transmitted. Focussing
allows radar systems to put power where it is most needed. Inevitably all beams have
some sidelobes. Shaping of these is an interesting mathematical problem which we do
not have time to cover here. Many modern radars use phased array antennas which
comprise many small antennas each of which can be assigned a separate (complex)
weighting. Such a system allows the radar beam to be steered electronically rather
than mechanically as is the case for conventional parabolic dish antennas.

2. The duplexer — this switches the antenna between transmission and reception. Both
cannot happen at the same time usually. Typicallya radar will transmit for no more
than 10% of time. During most of the remainder of the time it will be in receive mode.

3. The radio frequency (RF) oscillator — provides the carrier signal for the radar. This
will usually be at least 10 times the bandwidth of the (intermediate frequency coded)
waveform it carries.

4. The RF mixers — one in each of the transmitter and receiver. These serve to put the
waveform onto the carrier signal in the transmitter and to remove it in the receiver by
mixing it with the carrier and then passing it to the low pass filters.

5. Filters and amplifiers — these amplify the various signals and filter out unwanted
frequencies. Filtering is a significant operation for the removal of noise. Noise is
typically “broadband” in that its spectrum is wide. By filtering out many regions of
the spectrum such noise is reduced. Amplifiers increase the power in the signals (and
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FIGURE 1. A simple radar system

the noise which is present) to make them less susceptible to noise in the later parts of
the receiver. Filtering also serves to remove high frequency components after mixing.

6. Components corresponding to the ones in 3, 4, 5 for the intermediate frequency (IF)
stages of the system; in particular the demodulation mixers and filters which produce



298 B. Moran / Mathematics of Radar

the I and Q channels. These are obtained by mixing with two IF sinusoids �=2 radians
out of phase with each other.

7. Waveform generator — produces the desired waveform for modulation onto the IF
carrier and then onto the RF carrier for transmission. The waveform is also used to “
matched filter” the return. We shall spend some time discussing waveform design in
section 3.

8. Signal processing block — this serves to detect, identify, estimate the range and/or
doppler of targets, to remove clutter and noise not removed earlier in the processing,
etc. As analogue to digital (A/D) converters become faster and more accurate, signal
processing is increasingly accomplished by converting the signals to digital form and
then using digital circuitry and even software. In fact technology already at the (low)
IF stage and I/Q channel separation can be accomplished digitally.

1.3. Doppler and Range

We begin here to build the mathematical model of radar processing, by and large follow-
ing Borden’s treatment [3]. Usually a transmitted signal comprises a slowly varying wave-
form superimposed on a rapidly oscillating sinusoid. Thus

(1.1) s(t) = w(t): cos(2�(fct + �(t))

where w(t) is the amplitude modulation waveform, �(t) represents the frequency or phase
modulation and fc is the carrier frequency. It is important to make the rather obvious obser-
vation at this stage that all signals transmitted and received are real-valued. Of course we can
represent the signal as the result of amplitude modulating two sinusoids with opposite phase
(that is, differing by �=2), thus

s(t) = w(t): cos(2��(t))cos(2�fct)� w(t) sin(2��(t)) sin(2�fct);

which in complex form is

(1.2) s(t) = <
�
w(t):e2��(t):e2�fct

�
;

provided the waveform w(t) is real. We write

(1.3) s0(t) = w(t)e2��(t)

for the complexification of the slowly varying part.
Much of the theory of radar processing takes place in the complex domain as we shall see

later. To give an idea of the relative variability of the two components of (1.1), the carrier
frequency will often be in the range 1–10GHz (= 1 � 10 � 109 cycles per second). The
variability of the waveform of course depends on its form. Often phase coded pulses are
used which, in theory, switch instantaneously, but limitations in the practical implementation
usually restrict the highest frequency components of the waveform to be no more than 1=10
of the carrier frequency.
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In the complex domain we can write the signal as

(1.4) s(t) = <
�
w(t):e2�i�(t):e2�ifct

�
= <

�
s0(t):e

2�ifct
�

The transmitted signal hits a target whose distance from the (collocated) transmitter
and receiver is R. Let us assume for the moment that the target is stationary relative to the
radar system and that it comprises a single scatterer. Then the return signal will, to a good
approximation (see Section [deleted -Ed.] for a more accurate view of radar scattering), be a
delayed version of the original signal which depends on the rangeR of the target. Specifically
the signal voltage at the antenna of the receiver is

(1.5) su(t) = As(t�
2R

c
)

where c is the speed of light andA represents the attentuation of the signal by the reflection.
As I have already said, this is an approximation to the true situation, but a good one for
most purposes. In fact, even if the target is totally unchanging the transmitted waveform
really excites the electrons within the material of the target which then reradiate a modulated
version of the signal. This effect is slight, but its use is being developed for the purposes of
target identification. More importantly the phase of the waveform will change on reflection
from the target. This can be accommodated within the complex form of the signal (that is, the
complex signal whose real part is given in (1.2)) by allowingA to be complex. Otherwise an
extra phase shift is imposed on the carrier.

When the waveform returns to the receiver some noise is added (“receiver noise”) which
arises from the thermal activity generated within the components of the receiver. It is impor-
tant to realise here that the fall-off of the signal strength (ie power) as a function of distance
of the target is as the fourth power of the rangeR, so that typically the received signal power
is very small (for a distant target 10�18 watts is not unusual — there is a saying among radar
engineers that the total signal energy received by all radars ever is not enough to turn a page)
and in this context receiver noise can be significant. To a good approximation, receiver noise
is Gaussian. That is we can write

sr(t) = su(t) +N(t);

whereN(t) is a Gaussian process, for the signal after the initial stages of the receiver.
I have mentioned the issue of noise several times and its importance cannot be over-

emphasised. At any moment it will often be the most significant part of the signal in the
system prior to the matched filter. Extraction of signal from noise is a major issue. In radar
literature the noise process is assumed typically to be “white Gaussian noise”. From a mathe-
matical perspective there are problems with this assumption. Such a continuous time process
cannot exist since it would have infinite power. To be more mathematically precise, we as-
sume that the power spectral density of the noise is flat across the interval [�B;B] where
B represents the bandwidth of the receiver; that is, the maximum frequency it will handle,
as would be the case if the signal had been passed through a (perfect) lowpass filter prior to
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further processing. The treatment of noise in this situation involves interesting ideas in the
field of mathematical statistics — specifically estimation theory and hypothesis testing, but
we do not have time to address them here. Accordingly we refer the reader to [13, 18].

Now we insert the possibility that the target is moving. This has the effect of modifying
the transmitted waveform other than just by delay. It imposes the doppler effect on it. If this
is done correctly (ie relativistically) it results in a “ time dilation” of the return signal, so that,
if the target has a radial velocity v, the return signal su(t) becomes

su(t) = As(�t�
2R

c
);

where

� =
(1� v

c
)

(1 + v

c
)
:

When v is much smaller than c this is approximated by � = (1 � 2v=c). A further
approximation is possible if, as is usually the case, the signal is “ narrow band”; that is, if its
(Fourier) spectrum is essentially in a range (fc � Æ; fc + Æ) where Æ is small compared to
fc. For most radar applications this is a reasonable assumption since the signal modulating
the carrier will have relatively low bandwidth. In this case, the return signal is approximated
by shifting the frequency of the return from a stationary target at the same range by fd =
(2v=c)fc. This is best written in terms of the complex signal

su(t) = <
�
s0(t�

2R

c
):e2�ifc(1�2v=c)(t�

2R
c
)
�

This equation is the standard one used in most radar calculations.

1.4. I and Q channels

As we have already said, processing of radar signals is done largely in the complex do-
main. Of course the signal transmitted from and returned to the radar antenna is real. How-
ever in a very natural way as we have seen (1.2) the transmitted signal is treated as the real
part of a complex signal which is simpler to understand. When the return signal is received
it is turned into a complex signal — that is, it is made into two real signals. This is usually
done in two steps. First the signal is “ demodulated” to one whose carrier frequency (the
“intermediate frequency” or IF) is much lower and so in practical terms easier to work with.
Demodulation is done by mixing (that is, multiplying) the return signal with a signal (pure
tone) whose frequency differs from the carrier frequency by the IF. In other words we form

sm(t) = sr(t)cos2�(fc + fIF )t

where fIF is the IF. The resulting signal is then passed through a low-pass filter which re-
moves all frequencies greater than the carrier frequency and leaves intact signals whose spec-
trum lies well below the carrier frequency. Typically for an S-band radar (ie fc � 3 � 109
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GHz) the IF will be around 100MHz or less and may be accomplished by two stages of de-
modulation. Using the product formula for sine and cosine we see that the resulting signal is
approximately

sIF (t) = w(t): cos 2��(�) cos 2�((fIF � fd)�))

�w(�) sin 2��(�) sin 2�(fIF � fd)�);

where � = t � 2R

c
. It needs to be realised that when I say “approximately” the degree of

approximation in this game is very large. Because of the need to detect very small signals the
filters used will often attenuate the power in unwanted frequencies by 10�8.

At this point the conventional radar system will mix the signal with both cos 2�fIF t and
sin 2�fIF t and again low pass filter to form the I and Q channels respectively. The radar
engineer really would like to obtain an analytic signal so the correct thing to do is to form the
Hilbert transform of the real signal sr(t). This is impractical, and so it is approximated by
this method. The approximation is very good for narrow band signals. The complex signal
which results from these transformations is

(1.6) sc(t) = s0(t�
2R

c
)e�2�ifdt:

1.5. Ambiguity

Let us return to the case when there is no doppler component; that is, when the target is
stationary. The return signal is as in (1.5) together with some noise. What happens next in
the radar receiver depends on the information we want to extract from the signal. However at
this point there are just two types of information we might want to obtain:

1. detection of the target — that is to decide on the basis of a statistical hypothesis test
whether we indeed have a signal or just noise;

2. estimation of the rangeR of the target.

It turns out that the optimal detector (in the sense of the Neymann-Pearson Lemma) and the
maximum likelihood range estimator both require the same operation — to take the correla-
tion of the received signal with a copy of the transmitted signal. This also has the effect of
maximizing the post-processing signal-to-noise ratio. In fact it makes sense to do this in the
complex domain. Thus we form the function

Q(x) =

Z
sc(t)s0(t� x) dt

where the bar over the signal indicates (for when we treat complex signals) complex conju-
gation. The maximum absolute value of this signal tells us the best estimate of the range in
Gaussian noise for this choice of transmitted signal. Note that we will usually have some
control over the shape of the latter and we shall spend some time later on issues concerned
with its design.
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When there is doppler present the radar behaves in a similar way. The return signal is
correlated (“ matched filtered”) with the transmitted signal, so that the resulting signal looks
like this:

(1.7) �(x; f) =

Z
R

sc(t)s0(t� x)e2�ift dt

where now the return signal sc(t) is as in (1.6). The effect of the matched filter is to maximise
the signal power relative to the noise power in the post-processing signal.

We call this the radar ambiguity function of the signal s0 and write it as �s0(x; f). It
is the output we would obtain from our receiver for a signal delay x = 2R=c and velocity
v = f:c=2fc. An example for a rectangular pulse is given in Figure 2. We shall deal with
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FIGURE 2. Ambiguity of rectangular waveform

the ambiguity function in Section 2. We shall return to the choice of waveforms in Section 3.

1.6. Extended targets

When the transmitted signal is reflected from an extended scatterer or from multiple scat-
terers which are not time varying, the resulting signal is obtained as a convolution of the
so-called reflectivity kernel of the target(s) with the transmitted signal. Thus if k(t) is this
kernel, where now t is a measure of range (which is the same as time in this context), the
reflected signal is

su(t) =
Z

R
s(t� �)k(�) d�:

Normally velocity does not vary from one part of the target to another so that this subjected to
a constant phase shift, though it is straightforward to derive the formula for varying doppler.
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2. Ambiguity Functions

This section discusses the mathematical structures lying behind the ambiguity function
(particularly the narrow band case) as we have described it in Section 1.5. We shall do so in
terms of the unitary representation theory of the Heisenberg group and we shall deal with the
theoretical ideas needed first.

2.1. Representations of the Heisenberg Group

The narrow band ambiguity function can be described in several different ways at varying
levels of abstraction. In an attempt to use some of the power of the abstract setting without
demanding too much of the reader, I have attempted to steer a middle course between papers
of Schempp [19–22] and the “naive” viewpoint of Wilcox [4]. In many respects the point of
view adoped here is that of Auslander and Tolimieri [12]; this couches the theory in terms
of the infinite dimensional irreducible representations of the Heisenberg group. As these are
probably the most sophisticated ideas discussed here, we present them in detail.

2.1.1. The Heisenberg Group. The three dimensional Heisenberg group is the group of 3�3
upper triangular matrices with 1’s on the diagonal, thus:

(2.1) u =
1 x z

0 1 f

0 0 1
:

We denote the collection of all such matrices with real entries by H and note that they form
a group under matrix multiplication. Observe that the inverse of u above is

u�1 =
1 �x �z + xf

0 1 �f
0 0 1

:

This group has the topological structure of R3, so that we can talk about continuity of func-
tions onH. Lebesgue measurem on R3 is invariant in the sense that

(2.2)
Z

R3
f(ux) dm(x) =

Z
R3
f(x) dm(x);

where the variable x represents an element ofH and u is an arbitrary element ofH. Here f is
any suitable function for which the integrals make sense (such as continuous complex-valued
functions with compact support). In fact, for this group, the measure is both left invariant
and right invariant, so that equation (2.2) also holds when u multiplies x on the right in the
argument of f .
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2.1.2. Unitary Representations. A unitary representation of H is a map x ! Ux from H
into the group of unitary operators U(H) of some (separable) Hilbert space H, which is a
homomorphism in the sense that

Ux1:Ux2 = Ux1:x2;

where the : on the left side indicates multiplication of operators and on the right multiplication
of group elements in H. We shall also assume that this map is continuous into the weak-
operator topology on U(H); that is,

x 7! h�;Ux�i

is continuous for every � and � in the Hilbert space.
There are some simple such representations of H for which H is one dimensional (and

so its unitary group can be identified with the group of complex numbers of absolute value 1
under multiplication). An example is the trivial representation 1 where

1x = 1

for all x 2 H . A slightly less trivial example is of the form

(2.3)

0
@1 x z

0 1 f

0 0 1

1
A 7! e2�i(�x+�f)

where � and � are any real numbers. This gives a two-dimensional family, parametrized by
� and �, of one-dimensional representations, but these are not important for our purposes.

2.1.3. Irreducibility and Equivalence. We need to make two more general definitions from
representation theory. First we need to say when two representations, say x! U (1)

x
onH1,

and x! U (2)
x

onH2, are equivalent. By this we mean that they are the same up to a change
of Hilbert basis, or equivalently, that there is a unitary operator V fromH1 ontoH2 such that

V U (1)
x

= U (2)
x
V

for all x 2 H.
A representation of H (x 7! Ux on H, say) is irreducible if it cannot be broken up into

sub-representations, that is, if there are not two subspaces H1 and H2 each invariant under
all of the operators Ux (x 2 H), such that H = H1 � H2 in the sense of Hilbert spaces.
The restriction of U to these subspaces produces representations U (1) and U (2) on H1 and
H2 respectively, such that, for all x 2 H ,

Ux(�1 + �2) = U (1)
x
�1 + U (2)

x
�2;

where �j 2 Hj (j = 1; 2). While it may not be obvious, this is equivalent to the non-
existence of a non-trivial subspace of H which is left invariant by each of the operators
Ux; (x 2 H). This is a consequence of the unitary property of the operators. Equally it
is equivalent by Schur’s Lemma to the non-existence of a non-trivial bounded operator onH
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which commmutes with all of the Ux. Evidently all of the one-dimensional representations
described in (2.3) are irreducible.

2.1.4. The Schrödinger Representation. Now we define a representation ofH on the Hilbert
space L2(R) of complex square integrable functions on R (or equivalently complex-valued
finite energy signals on R) by letting the matrix (2.3) act on a signal s as a point target with
doppler shift f and delay x would. Specifically we write

(2.4) U


x
(s)(t) = e2�i
(ft�z)s(t� x):

Note that the variable z acts as a scalar multiplier (namely the scalar e2�i
z) which makes
the homomorphism property work out correctly. Here 
 is a non-zero real number. Now the
Stone-von Neumann theorem says that, up to equivalence of representations, the representa-
tions of the form U 
 are the only irreducible representations which are not one dimensional,
so that (2.3) and (2.4) are descriptions of all of the irreducible unitary representations of the
Heisenberg group up to equivalence. The particular forms of the infinite dimensional irre-
ducible representations of the Heisenberg group given in (2.4) are called the Schrödinger
representation.

In fact the representation in (2.4) is characterized via the Stone–von Neumann theorem
as the unique (up to equivalence) irreducible representation whose restriction to the centre of
H (that is, to the matrices as in (2.1) for which f = x = 0) is just z ! e2�i
zI where I
is the identity operator on L2(R).

2.2. Ambiguity Functions

It is now easy to define the ambiguity function corresponding to a signal s in terms of the
infinite dimensional irreducibles of the Heisenberg group. WritingU = U 1, we define

(2.5) �s(x; f) = hs; Uxsi

where

(2.6) x =

0
@1 f 0
0 1 x

0 0 1

1
A :

This produces the function we have defined in (1.7). This view of ambiguity functions can
be found in the paper [12] of Auslander and Tolimieri. The choice of element of the group
may seem arbitrary, but remember that the only effect of changing the top right hand corner
of this matrix is to multiply the ambiguity function by a scalar of absolute value 1. In fact, it
is really the absolute value of the ambiguity function which is important, since it represents
the response of the system to a target of a given range and frequency, and this is unchanged
by a change in the top right hand corner. In effect we are making a choice of cross section of
the quotient ofH by its centre Z.
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Once we have made this definition, it makes sense to allow the cross ambiguity function

�s;s0(x; f) = hs;Uxs
0i;

where x is as in (2.6).

2.2.1. Properties. The (cross-)ambiguity function has a number of remarkable properties,
one of the most important of which is Moyal’s identity:

THEOREM 1. Let s and s0 be in L2(R). Then

jj�s;s0jj
L2(R2

)
= jjsjjjjs0jj:

This is a simple consequence of the following theorem:

THEOREM 2. Let s1,s2,s3,s4 be in L2(R). Then

h�s1;s2:�s3;s4iL2(R2
)
= hs1; s3ihs2; s4i:

One of the important consequences of Moyal’s identity is that the unitary representation
x 7! Ux is a square integrable representation modulo the centre ofH. Such representations
have been widely studied.

Another remarkable property of this quadratic form on L2(R) is its variation under the
Fourier transform operator.

THEOREM 3. Let s 2 L2(R). Then, for any (x; f) 2 R2,

(2.7) �
F(s)(�f; x) = e2�ifx�s(x; f):

In fact this arises from an interesting intertwining property of the Schrödinger represen-
tation. The map

(x; f; z) 7! (f;�x;�z)
is an anti-automorphism of the Heisenberg group which we call � and so x 7! �(x)�1 is an
automorphism. Call this �. Then

�(x; f; z) = (�f; x; z � fx):

Moreover
F(Ux(s)) = U�(x)(F(s));

so that the Fourier transform operator intertwines the two representationsU andD where

(2.8) Dx = U�(x):

Now, for s 2 L2(R),

e2�iz�s(x; f) = hs; Uxsi = hF(s);F(Uxs)i;

by the Plancherel Theorem, and in view of (2.8) this equals

hF(s);DxF(s)i = hF(s); U�(x)F(s)i = e2�ifx�
F(s)(�f; x);

which proves equation (2.7). A corresponding equality holds for the bilinear form.
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2.3. Weil-Brezin Formula (Zak Transform)

There is another way of realising the unitary representations we have described and used
above. It will simplify formulae if we deal only with the case 
 = 1, though of course
the theory extends in an obvious way to all other non-zero values of 
. Instead of using the
Hilbert space L2(R) we consider a Hilbert space K of functions F on the Heisenberg group
itself. Let � be the subgroup ofH consisting of matrices of the form

(2.9)

0
@1 n z

0 1 m

0 0 1

1
A

where n;m 2 Z and z 2 R. Consider the space K of functions F onH which satisfy

1. F (
x) = e2�izF (x) for all 
 2 � as in (2.9);
2.
R
H=�

jF (x)j2 dx <1,

with the inner product

(2.10) hF;GiK =

Z
H=�

F (x)G(x) dx:

Next we define a representation V ofH just by the simple formula

(2.11) Vx(F )(y) = F (yx):

We need to make a few remarks about these formulae. First note that 1. makes jF j constant
on the right cosets of �, so that the integral in 2., which is over the right coset space �0nH ,
makes sense. This applies equally to the integral in (2.10). Secondly, the space of functions
K may be realised as the space of L2 sections of a line bundle on the torus T2. Thirdly,
those familiar with induced representations will recognize that this is just the representation
� , induced from the subgroup � toH, where � is given by0

@1 n z

0 1 m

0 0 1

1
A �! e2�iz;

that is, V = indH
�
� , in the terminology of Mackey. We note that � is a normal subgroup

of H and so we may apply standard Mackey theory. The stabilizer of this representation is
just � itself and so the induced representation is irreducible. Now the Stone–von Neumann
Theorem tells us that the only irreducible representation whose restriction to the centre ofH,
the subgroup of matrices with x and y both zero, is just e2�iz times the identity operator,
is the one we have called U
 earlier with 
 = 1. It follows that the representation V and
U = U1 are equivalent, so there is a unitary operatorW intertwiningU and V .
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It is not difficult to calculate that the intertwining operator isW : L2(R) 7! K given by

(2.12) W (s)(f;x; z) = e2�iz
X
k2Z

s(x+ k)e2�ikf :

This formula is called the Weil-Brezin formula or (usually without the term e2�iz) the Zak
transform. In essence it is a map between functions on R and functions on the unit square
(the cross sections of the line bundle) and maps L2(R) onto L2(I2) where I represents the
unit interval. In fact the map is unitary. Since it intertwines two irreducible representations it
has to be unitary up to a scalar multiple.

This gives us another way of representing ambiguity functions, since for s 2 L2(R),

(2.13) e2�iz�s(x; f) = hs;Uxi = hW (s); VxW (s)i:

This alternative view is a useful device in realising theoretical features of �.

2.4. Resolution and Hermite functions

This section is taken largely from the work of Wilcox [4]. He uses a slightly modified
form of the ambiguity function. Indeed in many papers the ambiguity of signal s is defined
in a symmetrised form:

(2.14) As(x; f) =
Z

R
s(t+

x

2
)s(t�

x

2
)e2�ift dt:

This formalism corresponds to a slightly different description of the Heisenberg group as the
group on R3 whose multiplication is given by

(2.15) (x1; f1; z1) � (x2; f2; z2) = (x1+ x2; f1+ f2; z1+ z2+B(x1; f1;x2; f2))

where

(2.16) B(x1; f1;x2; f2) =
1

2
(x1f2 � f1x2):

It is important to be aware that this does not change the significant properties of the ambiguity
function. In fact

As(x; f) = e�ifx�s(x; f):

The Hermite functions play a central role in the theory of this object. For our purposes
we define them by follows:

Wn(t) =
21=4
p
n!
Hn(2

p
�t)e��t

2

(n = 0; 1; 2; 3; : : :)

whereHn is the nth Hermite polynomial:

Hn(t) = (�1)nex
2=2
� d
dx

�n
e�

x
2

2 (n = 0; 1; 2; 3; : : :):
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The Hermite functions form an orthogonal basis of L2(R). Their ambiguities are easily
calculated in terms of known functions:

AWn
(x; y) = e�

�

2
(x2+y2)Ln(

1

2

�
�(x2 + y2)

�
where Ln is the nth Laguerre function

Ln(x) =
1

n!
ex
� d
dx

�n
(xne�x) for x > 0.

Evidently such functions are radially symmetric. In fact this characterizes Hermite wave-
forms, as Wilcox observes in [4].

THEOREM 4. An ambiguity functionAs(x; y) is radially symmetric, that is,

As(x; y) = f(x2 + y2)

if and only if s = cWn for some n.

We mention here too the many papers of Schempp on this subject and on the ambiguity
function in general (see, for example, [19–22]).

The sharpness of the peak of the ambiguity function (at (0; 0), of necessity) is a measure
of the waveform’s capacity to resolve nearby (in both doppler and range) targets. One way
of measuring resolution capabilities is as follows. Fix a minimum response resolution � and
consider the level curve

jAs(x; y)j2 = 1� 4�2�2:

This is approximately an ellipse, which Wilcox calls the resolution ellipse. Write its equation
as

�2x2 + 2
xy + � 2y2 = �2:

In fact

� =

Z
R
f2jF(s)(f)j2 df � =

Z
R
t2js(t)j2 dt

are respectively measures of the bandwidth and the time duration of the signal. Two close
point targets will produce a response which comprises two copies of the ambiguity function
with slightly different centres. These two targets will be most difficult to resolve if their
resolution ellipses share a common major axis. The two targets are said to be resolvable if
the centres of their resolution ellipses are one major semi-axis apart. This number — the
smallest resolvable separation — is given by

R(�)2 =
2�2

� 2 + �2 �
p
(� 2 � �2)2 + 4
2

:

Wilcox calls R(�)=� the resolution factor �, but perhaps for mathematical precision the
resolution factor should be the derivative of R(�) at 0. Wilcox has shown that the best
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resolution factor obtainable subject to constraints � 6 �0 and � 6 �0 on the bandwidth and
time duration is

� =
1

min(�0; �0)
:

The Hermite functions arise in this context as follows. Let 
n be the subspace of L2(R)
consisting of all functions of the form P (t)e��t

2

where P is a polynomial of degree at most
n. The following theorem of Hardy characterizes 
n.

THEOREM 5. Let s 2 L2(R) satisfy

s(t) = O(tne��t
2

); jtj ! 1;

Fs(f) = O(fne��f
2

); jf j ! 1:

Then s 2 
n

Now we have the following theorem of Wilcox.

THEOREM 6. The Hermite waveformWn has the smallest resolution factor of all wave-
forms in 
n.

2.5. Characterization

We discuss here the problem of how to describe the classA of ambiguity functions�s as
s ranges over all functions in L2(R). One easy characterization arises from the observation
that the Fourier transform of the ambiguity function with respect to the doppler variable is

F�1
2

(�s)(x; �) = s(�)s(� � x);

where we use the notation F2 to mean the Fourier transform with respect to the second
variable. Making the change of variable

� � x = u; � = �;

we obtain the function
H(u; �) = s(�)s(u):

We writeH = R(�s) to denote this transformation; that is,

(2.17) R(F )(s; t) = F�1
2

(F )(t� s; t):

To describe ambiguity functions then it is enough to describe these functions intrinsically
and this is easily accomplished. The following is a theorem of Wilcox [4], but see also [12].

THEOREM 7. LetH 2 L2(R2) satisfy

1. H(u; �) = H(�; u)
2. H(x; x) > 0
3. H(v; v)H(x; �) = H(x; v)H(v; �)
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Then there is a signal s 2 L2(R) such thatR(�s) = H; that is,

�s(x; f) = F2(K)(x; f)

whereK(u; �) = H(� � u; �).

A somewhat similar theorem, also due to Wilcox, characterizes ambiguity functions in
terms of their expansions in tensor product bases of the Hilbert space

L2(R2) = L2(R)
 L2(R):

A tensor orthonormal basis of L2(R2) is a basis  m;n(x; y) = �m(x)�n(y) where (�n)
is an orthonormal basis of L2(R). Any member F of L2(R2) has an expansion

(2.18) F (x; y) =
X
m;n

cm;n�m(x)�n(y)

which converges in L2(R2). The following simple theorem characterizes ambiguity func-
tions in terms of their expansion in such a basis.

THEOREM 8. A function F 2 L2(R2) is an ambiguity function if, in equation (2.18),

cm;n = anam

for some sequence (an).

This has the following immediate corollary

COROLLARY 1. A function F 2 L2(R2) is an ambiguity function if, in equation (2.18),

ck;kcm;n = cm;kck;n and ck;k > 0 for all k;m; n:

Another characterization of ambiguity functions arises from their description in terms
of the representation of the Heisenberg group. To this end, we recall that a complex-valued
function p onH is positive definite if, for any choice ofN complex numbers cn and elements
of the group xn,

NX
m;n=1

cmcnp(xmx
�1
n
) > 0:

positive definite functions arise as functions of the form

p(x) = h�;R(x)�i;

where R is a representation of the group and � and is an element of the Hilbert space on
which it acts. Among the positive definite functions, the ones which arise from irreducible
representations are characterized by the following property: we call a positive definite func-
tion p extremal if, for all other positive definite functions q for which p��q is also positive
definite for some � > 0 q is a multiple of p.
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Since we know the irreducible representations of the Heisenberg group, we also know
all extremal positive definite functions. An ambiguity function is now a function �(x; f) in
L2(R) for which the function

p(x; f; z) = e2�iz�(x; f)

is an extremal positive definite function. While this characterization is not as easily checked
as the earlier ones it is of theoretical importance.

2.6. The Abiguity Problem

The simple abiguity problem is that of determining a signal s from its ambiguity �s. To
make it mathematically meaningful we restrict the signal to belong toL2(R), so that for such
signals we are interested in the question: is s 7! �s one to one. The answer to this question
is yes.

It is relatively simple to show the following theorem (see, for example, [12]),

THEOREM 9. Let s1 and s2 be two L2(R) functions for which �s1 = �s2 then s1 = s2.

However this is not really an answer to the radar engineer’s problem for several reasons,
one of which is that the ambiguity function is not what is important. It is the absolute value
of the ambiguity function which is really of interest. In this context, the problem arises of
determining all possible waveforms s whose ambiguity functions have the same absolute
value. Much of this section is adapted from work of Philippe Jaming indexJaming, Philippe
and his collaborators (see [7,10,15]). Following Bueckner ( [9]) we state here the following:

DEFINITION 1 (General Abiguity Problem). Given s1; s2 2 L2(R) what is the set of all
pairs s

0

1
; s

0

2
such that

(2.19) j�s1;s2(x; f)j = j�s0

1;s
0

2
(x; f)j

for all (x; f) 2 R2?

This problem is unsolved in general, but the following simple observation shows that
equation (2.19) does not force (s1; s2) = (s

0

1
; s

0

2
). Let

(2.20) s
0

j
= Ux

0 sj where x
0

2 H:

Then , with x = (x; f; 0) 2 H,

j�s0

1;s
0

2
(x; f)j = jhs

0

1; Uxs
0

2ij = jhUx0s1; UxUx0s2ij

= jhs1; U�

x0UxUx0s2ij = jhs1; UxUzs2ij

where z = x�1x
0�1

xx
0

. Now z is a commutator and so (since the Heisenberg group is two
step nilpotent) belongs to the centre of H. It follows from the irreducibility of U that Uz is
just a scalar times the identity operator, say Uz = e2�izI , and hence that

jhs1; UxUzs2ij = jhs1; UzUxs2ij = jhe2�izs1; Uxs2ij = jhs1; Uxs2ij = j�s1;s2(x; f)j:
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We will say that s
0

1
; s

0

2
are Heisenbery related to s1 and s2 if a relationship holds as in

(2.20). Two such related pairs have the same absolute values for their ambiguity functions.
The problem is now restated as: Does (2.19) force s

0

1; s
0

2 to be Heisenberg related to s1; s2?.
Unfortunately this is not the case. For instance if

s1(t) = s2(t) =

�
sin t

t

�n
sin(2�nt)

s
0

1
(t) = s

0

2
(t) =

�
sin t

t

�n
cos(2�nt)

then
j�s1;s1(x; f)j = j�s0

1;s
0

1
(x; f)j;

for all (x; f) 2 R2, though s1 is not Heisenbery related to s
0

1
. The proof of this is relatively

easy if one works in the Fourier domain and uses the identity (2.7). The Fourier transforms
of these functions comprise two non-zero identical “pieces” around �2n�; the difference
between the two being in the signs of these pieces. The ambiguity therefore is non-zero only
when translated of these pieces overlap. It is now clear that the ambiguities can differ only is
sign.

For special classes of functions it is the case that all s
0

1; s
0

2 are obtained by such transfor-
mations. For instance, Bueckner [9] and De Buda [5] have proved that, if s1 and s2 are both
of the form P (t) exp(� t2

2
) with P a polynomial, then s

0

1
and s

0

2
are Heisenbery related to

s1 and s2.
Jaming indexJaming, Philippe [10] has obtained some results on the abiguity problem

for compactly supported functions. His results are stated in terms of the symmetrised form,
though obviously simple modifications convert to the �-form of the ambiguity function. Let
u 2 L2(R) be a compactly supported function and suppose v satisfies jAvj = jAuj. Then
it is relatively easy to see that v is also compactly supported. Moreover if the support of u
is contained in an interval of length 2a then the support of v is also contained in an interval
of length 2a. In fact Jaming shows that the interval of support must have the same length for
both u and v.

We may now assume that supports of both u and v are contained in [�a; a] and no
smaller interval, in particular, u and v are compactly supported. The Paley-Wiener theorem
ensures that Au(x; y) and Av(x; y) are both entire functions of exponential type in the y
variable. Now (cf : [10]) the following holds.

(2.21) Au(x; y)Av(x; �y) = Av(x; y)Au(x; �y) for all x 2 R; y 2 C:

On the other hand, by the Hadamard factorisation theorem, an entire function f(z) of ex-
ponential type is entirely determined by its zeros, up to a factor �e�z with �;� 2 C.
Unfortunately (2.21) only tells us that, for fixed x, if z is a zero ofAu(x; :) then either z or
�z is a zero ofAv(x; :).
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Several cases occur, for instance,Au may only have real zeros (e.g. if u = A[a;b]), then
Au andAv have the same zeroes.

There are some functions u for which every ambiguity partner v is such that either Au

and Av have the same zeroes, or Au and AZv have the same zeroes, where Zu(t) =
u(�t). The final alternative is that A(u) and A(v) may have some common non-real
zeroes and some conjugate zeroes.

In what follows, after replacing u by Zu or by some function Heisenbery related to u,
we shall assume thatA(u) andA(v) have the same zeroes. In other words we now consider
the following restricted radar abiguity problem :

PROBLEM 1 (Restricted Radar Abiguity Problem). Given a compactly supported u 2
L2(R), what is the set of ambiguity partners v of u, such that for every x 2 R, A(u)(x; :)
andA(v)(x; :) have the same zeroes in the complex plane ?

Jaming calls such ambiguity partners restricted ambiguity partners and shows that there
exist compactly supported functions u which have ambiguity partners that are not restricted
ambiguity partners either of u or of Zu. He also shows the following result.

THEOREM 10. Let u 2 L2(R) be a compactly supported function and let v be a re-
stricted ambiguity partner of u. If 
 is the open set of all x such that A(u)(x; :) is not
identically 0, there exists a locally constant function � on 
 such that, for every t0; t1; t2
belonging to the support of u,

�(t2 � t1) + �(t1 � t0) � �(t2 � t0) (2�)

and
v(x) = cei�(x�a�x0)ei!xu(x� a)

for some a 2 R; ! 2 R, c 2 T and some x0 belonging to the support of u. Conversely,
every function v of that form is a (restricted) ambiguity partner of u.

This theorem essentially states that if u is “simple” (in particular, the support is an in-
terval) then the solutions of the abiguity problem are “simple”, whereas for complicated u
(for example, when the support has big gaps) the solutions are also complicated. In [7], the
discrete abiguity problem is considered and various interesting results are obtained.

2.7. Approximation

An important problem for the radar engineer is to invent waveforms with specific ambi-
guity properties. The abiguity problem of the previous section is one part of that problem —
it examines the possibility of uniquely specifying a waveform in terms of its ambiguity (or
its absolute value), and have we have seen without further constraints this is not successful.
Nonetheless the radar engineer needs despite the non-uniqueness to be able to find wave-
forms with appropriate ambiguity fucntions. One way to do this is first to invent a function
F 2 L2(R2) with the appropriate properties and then find the ambiguity function which
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most closely approximates it. In other words, the problem is to find the signal s 2 L2(R)
which satisfies

s = argminjjAs � F jj
L2(R2

)
:

Using the unitary operatorR described in equation (2.17), we obtain

jjAs � F jj2 = jjs(t)s(�)�R(F )jj2 = 2(1� hR(F ); s
 si)

if both F and s are normalized. The problem now is one of maximizing

hR(F ); s
 si)

which corresponds to finding the eigenvector whose eigenvalue has the largest absolute value
of the integral operator with kernelH, that is,

H(u)(t) =

Z
R
H(t; �)u(�) d�:

This operator is compact and so its eigenvalues �1; �2; : : : decrease in absolute value and
tend to zero. We choose for our signal s the eigenvector corresponding to �1.

2.8. The Wide-Band Ambiguity Function

The classical ambiguity function of Woodward is a result of making the narrow band
approximation. There are situations where this is not valid. For example in sonar work where
the speed of sound through water is not sufficiently high compared to velocities of targets that
the approximation is valid. Also in radar the approximation breaks down in two ways:

1. the velocity is a substantial proportion of the velocity of light. This is an unlikely
scenario in practice.

2. the radar is “wide-band”; that is, it uses a broad spectrum. This is an area of increasing
interest.

The wide band cross ambiguity function is defined by

Ws1;s2(x;�) = �1=2

Z
R

s1(t)s2(�(t+ x)) dt;

where � > 0 represents the scaling due to doppler and x corresponds to range as before;
the bar over the second term in the integral corresponds to complex conjugation. The (auto)-
ambiguity function of a signal s isWs(x;�).

This formula too corresponds to a representation of a group. This time the group in
question is the so called ax+ b groupG of 2� 2 matrices�

a b

0 1

�
where a > 0 and b 2 R. The representation is again on L2(R) and is given by

Ua;b(s)(t) = a1=2s(at+ b)
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for f 2 L2(R). Thewide-band ambiguity function is then just

Ws1;s2(x;�) = hs1; U�;x(s2)iL2(R)
:

Several properties of the narrow band ambiguity function carry over to the wide band case.
However it is necessary to restrict to a smaller class of functions to make the theory closely
approximate that of the narrow band ambiguity. We write H2(R) for the Hardy class of
functions whose Fourier transforms vanish on the negative half-line. Note that this subspace
is invariant under the action of Ua;b for all a > 0 and b 2 R. The original representation
therefore cannot have been irreducible, though the restriction toH2(R) is. We need to restrict
further to the those functions s which satisfyZ

R+
jF(s)(f)j2

df

f
<1:

This class is designatedH and we write

hs1; s2i =
Z

R+
F(s1)(f)F(s2)(f)

df

f
:

It is now possible to obtain a Moyal type identity. For u in H 2(R) and v 2 H, Wu;v is in
K = L2(R+ � R; a�1 da db), and

hWu;v;Wu0;v0iK = hv; v0i
L2(R)

hu; u0iH:

There are more aspects of the narrow band theory which carry over to the wide band theory
with appropriate modifications. For example the approximation results of Section 2.7 have a
counterpart in the wide band theory. The ax+b group is an example (the simplest) of a non-
unimodular group — its left and right invariant measures are different. It is this fact which
produces the need for the two separate Hilbert spaces H2(R) and H. For more information
on this issue, the reader is referred to [6]. For more on the general theory of the wide-band
ambiguity, we refer the reader to [1, 2, 11, 17, 23]. Jaming [10] has considered the ambiguity
problem for wide-band ambiguity.

3. Waveform Design and Processing

For many purposes the ideal radar waveform would produce an ambiguity function which
was the so-called “thumbtack” — that is, zero everywhere except at the origin. This would
have ideal range and doppler discrimination. However Moyal’s identity tells us that no (finite
energy) signal gives rise to that waveform since the result has to be inL2(R2) and have norm
equal to the square of the norm of the signal. A very short pulse would seem to have many
advantages in this sense. It has a good thumbtack-like ambiguity at least in the range direc-
tion. However it has many disadvantages. If it is not to have extremely high power (which of
course means that the electronics have to be able to deliver this amount of power to the an-
tenna) then the total electromagnetic energy hitting the target is very small and the resulting
energy returned to the receiver orders of magnitude smaller. The received energy falls off as
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the fourth power of the distance of the target so total energy on target is a significant factor
in radar detection, particularly of distant targets. From this perspective longer waveforms are
better. Another disadvantage of a short pulse is that it is a very wideband signal, and so not so
good in the doppler direction. Moreover, to produce the shape of siuch a pulse and effectively
deal with it on reception requires electronics capable of handling such signals. Maintaining
linear responses over such a frequency spread is difficult. Radar engineers then aim to have
long waveforms whose auto- correlation ( matched filter) produces something approximating
a thumb-tack. This process is called pulse compression. A purely random signal of infinite
length (and therefore energy) — that is one comprising a bi-infinite sequence of Gaussian
random variables of zero mean and constant variance has an expected ambiguity which is
a thumbtack. Figure 3 gives a the ambiguity of a finite waveform obtained using a random
number generator. As a result pseudo-random codes (which are finite and deterministic ap-
proximations to random signals) are often used as waveforms in radar. Many papers have
been written examining the properties of different waveforms. We give a small sample of
these here.
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FIGURE 3. Ambiguity of random waveform

Before we do, however, we note that for some purposes a thumbtack is not the best wave-
form. For example there are circumstances in which a waveform which is extremely doppler
tolerant (that is its ambiguity is a ridge along the doppler axis) and in others we may require
range tolerance.

3.1. Conventional waveforms

We shall first talk about waveforms for a convventional radar.

3.1.1. Rectangular and Gaussian pulses. The simplest waveform used in radar is just a sim-
ple pulse, either rectangular or Gaussian. Such pulses are shown in Figure 4 and their ambi-
guity functions in Figure 5. In fact, of course, we plot the absolute value of the ambiguity
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FIGURE 4. Rectangular and Gaussian waveforms

Velocity in metres per second

Di
sta

nc
e 

in 
m

et
re

s

Ambiguity of rectangular pulse

0 5 10

x 10
4

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
4

Velocity in metres per second

Di
sta

nc
e 

in 
m

et
re

s

Ambiguity of Gaussian pulse

0 5 10

x 10
4

−1

−0.5

0

0.5

1

x 10
4

FIGURE 5. Ambiguities of rectangular and Gaussian waveforms

since in general it is a complex function. Notice the “sinc” behaviour on the doppler direction
of the rectangular pulse. It has a relatively sharp peak in the doppler direction but then has
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“sidelobes”. The effect of these sidelobes is to mix targets of differing dopplers into the same
doppler bin. This is an issue for shipborne radars, in particular, where the reflection from the
sea close to the ship might obscure a distant (and therefore fainter) airplane whose doppler
should separate it.

A glance at the doppler axes in Figure 5 shows that I have plotted doppler shifts cor-
responding to quite unrealistic velocities. I should point out that the values assume a 100
microsecond pulse (a long one) at 10 GHz. A more realistic ambiguity plot is shown in Fig-
ure 6 — it gives the ambiguities of the two waveforms for velocities up to mach 3 — about
1km metres per second. This too is an unrealistic representation since the grey scales do not
adequately convey the significance of the pixels in the image. Again from an engineering
viewpoint it is better to plot the logarithm of the values of the ambiguity — to be precise
we need a dB plot where the value in decibels is equal to 20 log10 j�j. These are shown in
Figure 7. As can be seen, the main problems with these waveforms are
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FIGURE 6. Ambiguities of rectangular and Gaussian waveforms out to mach 3

� significant doppler tolerance;
� very low range resolution.

To reiterate, a long pulse is used here and better range resolution could be obtained with a
shorter pulse. However, compared to many other waveforms both of these have significant
weaknesses.

3.1.2. Chirp waveforms. Perhaps the next most common waveform is called a “chirp” or
“linear chirp”. It is a signal with a linear increase or decrease in frequency over time. Using
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FIGURE 7. dB plots of ambiguities of rectangular and Gaussian waveforms

the fact that we have effectively real and complex (or I and Q channels) it is possible to
transmit the signal e��it

2

(rather than just its real part, say). The real part is shown in
Figure 8, along with its auto- correlation and the ambiguity of the complex signal is shown in
Figure 8. It will be seen that the ambiguity of the chirp has a ridge running across the diagram
which has quite a sharp peak, however, it does have a slight fall from left to right across the
image. This gives rise to an ambiguity between range and doppler. The sharpness of the
peak is a very useful feature of the chirp It is used in many applications and in particular in
synthetic aperture radar. As we have said, radar engineers describe waveforms with auto-
correlations looking like that of the chirp as pulse compression waveforms. They have the
property that they behave to some extent (at least for low doppler values) like a very sharp
pulse while retaining high energy.

3.1.3. Barker sequences. The fourth favourite waveform is based on Barker codes. Such a
code is a sequence of �1s with the property that the auto correlation takes just the values
0;�1 and the length of the code. For example the code [1� 1111] has auto correlation

[101050101]:

Barker codes have almost perfect auto correlation properties and quite doppler intolerant
ambiguity properties. The ambiguity is shown in Figure 10. Unfortunately they are only
known to exist in lengths 3, 5, 7, 11 and 13. Much mathematical effort has gone into trying to
show that these are the only lengths of Barker codes and much computing effort into finding
longer ones without success in both cases.
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FIGURE 9. Ambiguity of Chirp waveform

One way in which radar engineers have sought to overcome the lack of longer Barker
sequences is to use so called “Barker on Barker” sequences. These are formed by choosing
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Ambiguity of a Barker waveform of length 13
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FIGURE 10. Ambiguity of Barker waveform of length 13

two Barker codes (which may be the same) and substituting a multiple of one for each entry
in the other using that entry to determine the mulltiplicative factor. Thus a Barker of length
3 is [1� 1� 1] and using it together with the Barker of length 5 given above we obtain the
following code of length 15:

[ 1�1�1�1 1 1 1�1�1 1�1�1 1�1�1]:

Repeated substitution of this kind allows us to obtain arbitrarily long codes. Unfortunately
their auto correlation and ambiguity properties are considerably less than ideal. Figure 11
illustrates this for a Barker 7 on a Barker 13.

3.1.4. Costas Arrays. Costas arrays are used in the design of stepped frequency radars; that
is, radars in which the waveform comprises a sequence of pure tones at differing frequen-
cies. Thus a chosen collection of N frequencies f = (f1; f2; : : : ; fN)

T are transmitted in
consecutive time intervals of equal duration in this order. The frequencies are chosen from
equally spaced ones � = (�1; �2; : : : ; �N)

T , so that

(3.1) �j = �1 + (j � 1)(�2 � �1):

The choice of order can be described bya permutation matrix P so that = P�. In order to
obtain good ambiguity performance, the matrixP is chosen so that for any shift of the matrix
horizontally or vertically the non-zero terms overlap in at most one place. Such a matrix is
called a Costas array. This can be re-expressed in terms of the set S:

(3.2) S = f(i; j)jPij = 1g:



B. Moran / Mathematics of Radar 323

Ambiguity of a Barker 7 on Barker 13
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FIGURE 11. Ambiguity of a “Barker on Barker” waveform

Now P is a Costas array if, for r; s; r0; s0 distinct elements of S, no equation of the form

(3.3) s� r = s0 � r0

can hold.
There are several ways to construct Costas arrays (see Golomb [8]). Here is one due to

Golomb. Let � and � be two distinct primitive elements in the Galois field GF (pn), and
letP be the matrix whose entries are 0 except at the elements of the set

(3.4) A = f(i; j) : �i + �j = 1 (1 6 i 6 q � 2)g:

Then P is a permutation matrix and indeed a Costas array. Figure 3.1.4 is an example of a
Costas array of size 31 and Figure 3.1.4 is its ambiguity.

3.2. Complementary Waveforms

Following the view that the ideal waveform is a thumb-tack, we should require of such
a waveform that at least its auto- correlation be a spike at the origin and zero elsewhere.
As we have seen, the chirp approximates this quite well. No single waveform can achieve
this perfect auto correlation, though Barker waveforms approach the ideal. It is possible
however to find a pair of waveforms which have the property that if transmitted separately,
each correlated against a copy of itself and the results added then we do obtain a perfect spike.
Such waveforms are called complementary pairs. We require of a pair of waveforms w1(t)
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andw2(t) that

corr(w1; w1)(t) + corr(w2; w2)(t) = �T (t);

where �T is a short (triangular) spike at 0 of width T . This is equally expressed in terms of
convolutions:

(3.5) w1 � fw1(t) + w2 � fw2(t) = �T (t):

where ew(t) = w(�t). As we have said, it is possible to find such pairs.
In fact it is possible to find a pair of discrete codes p1 and p2 which are finite sequences

of�1s satisfing

(3.6) corr(p1; p1)(k) + corr(p2; p2)(k) = 0 except when k = 0;
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and from these easily construct waveforms satisfying (3.5). The classical construction of
these is due to Golay and independently, Shapiro. It is an inductive construction starting with
the two codes

p
(1)
1 = [1; 1]

p
(1)
2 = [1; �1]:

Then longer codes are constructed by the formula:

p
(k)
1 = [p

(k�1)
1 ; p

(k�1)
2 ]

p
(k)
2 = [p

(k�1)
1 ; �p(k�1)2 ]:

Our intention is to transmit the two waveforms in separate channels and on reception
keep them separate and matched filter each against the corresponding transmitted form. The
appropriate ambiguity function for such a pair of codes is the sum of the ambiguities of
each code separately. By Moyal’s identity, since p1 and p2 are orthogonal, so are �p1 and
�p2. After normalisation so that the sum of the energies in p1 and p2 equals 1, we have the
following:

(3.7) jj�p1 + �p2jj
2 = jj�p1jj

2 + jj�p2jj
2 = jjp1jj4 + jjp2jj4 =

1

2
:

This shows that the ambiguities of complementary waveforms already have some chance of
being more thumbtack-like than single channel waveforms, since the corresponding answer
for a single channel waveform is 1, and the height at the centre ((0; 0)) is the same in each
case. The ambiguity of a complementary pair is illustrated in Figure 14. In fact at dopplers
of interest in typical applications (up to mach 3, say) complementary pairs are quite doppler
tolerant. What is remarkable is that at all dopplers the range ambiguity is zero outside half
the range of the waveform.

It may seem that complementary sequences offer ambiguity properties superior to single
waveforms. However there are serious issues involved in the implementation of these wave-
forms. How does one maintain a significant separation of the two complementary sequences?
If they are separated in time, then the target must remain coherent over the time span of the
transmission for the advantages to be worthwhile. Separation in frequency, while feasible,
also carries with it disadvantages. The responses of targets are frequency dependent as is
attentuation through the atmosphere. Moreover, for extended targets, the effects of doppler
change with different frequencies. These result in degradation from the ideal situation de-
scribed here. The complexity of the electronics is also increased. One final observation:
ultimately there is really only one signal transmitted, whether it be spread over a long time
period (as time separation would require) or have a high bandwidth (in the case of frequency
separation). The use of complementary waveforms is merely a device to manipulate the
ambiguity function of a single waveform to push the lobes into more desired parts of the
range-doppler plane.
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Ambiguity of a Golay pair of length 64
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FIGURE 14. Ambiguity of a Golay pair of length 64

It is possible to go beyond just two waveforms. We recall the construction of the PONS
matrix. This works by analogy with the Golay pairs but produces 2n waveforms of length
2n which are complementary in pairs, so that one could use any number of complementary
sequence pairs separated by frequency or time or a mixture of both. The recursive method of
construction is to take two “parent” codes s1 and s2 of length l, say, and use them to construct
four “children” of double the length:

s1 � s2
s1 � �s2
s2 � s1

�s2 � s1;

where � indicates concatenation. It is relatively straightforward to see that, if the two parent
codes are orthogonal, so are the four children. Classical PONS is now formed by starting
with the two codes

1 1
1 �1

and repeatedly applying the above construction.
Of course the issues raised in the preceding paragraph are correspondingly exacerbated,

but for N waveforms the power in the ambiguity is now (by a repeat of calculation (3.7))
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just 1=N . As Figure 15 illustrates, when we use half of the PONS matrix of length 64 the
improvement in ambiguity is remarkable. We have perfect range sidelobes at all dopplers.

Ambiguity of first 32 PONS sequences of length 64
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FIGURE 15. Ambiguity of the first 32 rows of the PONS matrix of length 64
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