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1 Introduction

The author has two purposes in offering this Proceedings contribution. First is
to share the development history and current status of PONS, the Prometheus
Orthonormal Set, with the broader community of mathematicians. Second is to
make that community aware of some of the many interesting (in the author’s
opinion) open PONS problems.

PONS is a suite of digital signal processing and data transmission algorithms
whose genesis may be found in the Byrnes generalization [6] of the Shapiro Poly-
nomials [37]. They are efficient, scalable to incorporate growth, robust to reduce
the effects of transmission errors which inevitably occur, and secure to prevent
unauthorized access and to ensure the privacy of communications.

It is straightforward to describe, in heuristic terms, what we mean by energy
spreading. Namely, when a digital signal of any dimension is expanded in the
PONS basis, each of the terms in the transform domain has approximately the
same amount of energy. Various mathematical details may be found in publi-
cations including [6, 7, 11, 34]. Many published results may also be found at
https://www.prometheus-us.com/PONS-papers/.

For a more mathematical point of view, consider that energy is represented by
the L2 norm. Thus, a reasonable way to think of energy spreading is to analyze
the relative contributions to the L2 norm of the transformed versions of a finite–
energy signal coming from various sub–arcs of the unit circle. If energy is really
spread, that contribution should only depend upon the length of the sub–arc, and
not upon where in the unit circle it is located. Toward that end, in Section 4 we
define and discuss the concepts of the Fixed Arc Property (FAP) and an Energy
Spreading Gauge (ESG). FAP and ESG represent new research. The remainder
of the paper is a review.

1PONS research over the years has been supported mainly by internal (IR&D) funds. In addition, Prometheus Inc. ac-
knowledges the generous support received during this time from various US Department of Defense agencies, including the
Air Force, Missile Defense Agency, DARPA and National Geospatial Intelligence Agency.
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A further motivation for delving more deeply into energy spreading transforms
is the large amount of recent work in the electrical engineering community on the
application of PONS–type sequences to many areas, including wireless communi-
cations [14, 15, 23, 30, 31, 32], optical communications [27, 36], robust transmis-
sion of digital data [35], watermarking [13, 38], and radar [5, 17, 21, 26, 29, 40].
While these works have generated and continue to generate considerable interest
in the applied community, we believe that the fundamental theory of energy–
spreading transforms which underlies it all lacks a cohesive mathematical foun-
dation. For example, most of the above–cited authors appear to be unaware
of the ground–breaking work of H. S. Shapiro [37], who first constructed the
upper–flat ±1 polynomials, whose coefficient sets are complementary sequences,
which form the mathematical backbone of many of their (and numerous other)
contributions. Note that Shapiro’s 1951 work (these Shapiro Polynomials were
published eight years later by Rudin [33], who was a member of Shapiro’s Mas-
ters Thesis Committee at MIT) predates that of Golay [20], which appears to
be the generally accepted beginning of such ideas in the electrical engineering
community, by 10 years. In fact the story begins even earlier than 1951, as Golay
introduced the concept of complementary sequences in the context of multislit
spectrometry in 1949 [18, 19].

An essentially identical situation has occurred in the study of certain Reed–
Muller codes. Two basic facts known to Golay [20] and Shapiro [37], namely
that:

� the value of the nth term in the basic Shapiro sequence is +1 if the number
of times that the block {1, 1} occurs in the binary expansion of n is even
and −1 if it is odd; and

� when the rows of the classic Walsh–Hadamard matrix are multiplied term–
wise by the Shapiro sequence of the same length, the resulting Hadamard
matrix consists entirely of pairs of ±1 complementary sequences (hence,
more specifically, is a PONS matrix, see Section 2);

have been restated by Davis and Jedwab [14, 15, 23, 30, 39] in coding theory
language, thereby showing that PONS can be identified with a coset of the first–
order Reed–Muller code RM(1,m) inside the second–order code RM(2,m) [1].

In addition to the engineering results on energy spreading transforms, a small
sample of which is cited above, much mathematical work in harmonic analysis
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has flowed from the basic contributions of Golay and Shapiro [3, 4, 6, 8, 9, 10,
16, 24, 25, 28]. Thus, there is a long and rich history of work in this area in both
the mathematics and engineering communities, with little interaction between
them.

2 Mathematics of One–Dimensional PONS

We begin with a definition of the original symmetric PONS matrices. The orig-
inal development of PONS is based on the Shapiro polynomials [37]. To prove a
global uncertainty principle conjecture Byrnes expanded the Shapiro polynomi-
als into a basis via the concatenation rule depicted below [6]. Working with the
sequences formed by the polynomial coefficients, symmetric PONS matrices are
obtained as follows. Starting with

P1 :=

[
P1,1

Q1,1

]
=

[
1 1
1 −1

]
(1)

construct the 2 × 2 matrix P2 by combining the pair of rows of P1 using the
following four combination patterns:

P2 :=


P2,1

Q2,1

P2,2

Q2,2

 =


P1,1 Q1,1

P1,1 −Q1,1

Q1,1 P1,1

−Q1,1 P1,1

 =


1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

 .

Generalizing to the 2m × 2m case, combine each pair of rows in the same way to
obtain

Pm :=



Pm,1

Qm,1

Pm,2

Qm,2
...

Pm,2m−1−1

Qm,2m−1−1

Pm,2m−1

Qm,2m−1


=



Pm−1,1

Pm−1,1

Qm−1,1

−Qm−1,1

Qm−1,1

−Qm−1,1

Pm−1,1

Pm−1,1
...

...
Pm−1,2m−2

Pm−1,2m−2

Qm−1,2m−2

−Qm−1,2m−2

Qm−1,2m−2

−Qm−1,2m−2

Pm−1,2m−2

Pm−1,2m−2


. (2)

3



Properties of PONS Matrices

Here is a list of some of the important properties of these matrices:

Property 1. Suppose the rows of PL are ordered from 0 to L− 1 (i.e., the first
row has rank 0 and the last row has rank L − 1). Denote by Ar(z) the polyno-
mial “associated” to the r-th row (i.e., Ar(z) =

∑L−1
k=0 akz

k if (a0, a1, . . . aL−1)
denotes the r-th row, r = 0, 1, . . . L − 1). It is well known that, with this no-
tation, A1(z) = (−1)m+1A∗

0(−z) where A∗(z) = zdegAA(1/z) denotes the “in-
verse” of the polynomial A(z). This is a famous identity on the classical Shapiro
pairs. Property 1 is that a similar identity A2r+1(z) = λm,rA

∗
2r(−z) holds for

all r = 0, 1, . . . L/2, where λm,r is an extremely interesting number (with values
±1) expressible in terms of the “Morse sequence”. The Morse sequence is the
sequence of coefficients in the Taylor (or power series) expansion of the infinite
product

∏∞
s=0

(
1− z2

s)
.

Property 2. With the previous notation, for every r = 0, 1, . . . L/2 the polyno-
mials A2r(z) and A2r+1(z) are “Fejér-dual” (or “dual” for short), that is,

|A2r(z)|2 + |A2r+1(z)|2 = constant (= 2L, in this case) (3)

for all z ∈ C with |z| = 1. Equivalently, the (2r)-th row and the (2r + 1)-st row
are always “Golay complementary pairs” [20].

Property 3. [Much related to Properties 1 and 2] Every row-polynomial Ar(z)
is QMF, that is,

|Ar(z)|2 + |Ar(−z)|2 = constant (= 2L in this case) (4)

for all z ∈ C with |z| = 1.

Property 4 (The “splitting property” of rows). For every r = 0, 1, . . . , L−1, the
two “halves” of the row-polynomial Ar(z) are dual, each of these two halves has
dual halves, each of these halves (i.e., “quarters” of Ar(z)) has dual halves, and
so on. This “splitting property” is, by far, the most important property, in view
of its applications to “energy spreading”. It extends to general PONS matrices
and to a broader class of PONS-related Hadamard matrices.

Property 5 (The “constant row-sums property”). If m is even, then each row-
sum of PL (with L = 2m) has the constant value

√
L = 2m/2. If m is odd, then
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the row sums are either zero or
√
2L = 2(m+1)/2. This property, which we call

ERS (Equal Row Sums), is important but easy to check. This is a very special
case of the deep (and still partly open) problem of the values of row-polynomials
at various roots of unity.

Property 6 (“Bounded crest factor properties”). In engineering terms the crest
factor is the ratio of the peak to average power. Thus, mathematically in this
discussion, the crest factor is the ratio of the sup norm to the L2 norm of the
polynomial on the unit circle. Briefly stated, not only does every row-polynomial
have crest factor ≤

√
2, but also every finite section of such a polynomial has

crest factor not exceeding some absolute constant C.

Property 7 (“Correlation properties”). We devote the entire Section 2.1 to these
all-important properties.

2.1 Correlation results

Theorem 1. Let (a0, a1, . . . aL−1) be any row of any L × L PONS matrix (L =
2m). Let

cj =

L−1−j∑
k=0

akak+j (j = 1, 2, . . . L− 1)

denote the j-th out-of-phase aperiodic autocorrelation of that PONS row. Then
we have the “maximal” estimate

max
1≤j≤L−1

|cj| ≤ K · L0.73

where K is an absolute constant. (The exponent 0.73... arises from the compu-
tation of the spectral radius of some PONS-related matrix.)

This is indeed a difficult result, and the exponent 0.73... can be proved to
be optimal. The proof involves, in particular, heavy inequalities on norms of
matrix products. Also the proof becomes somewhat less technical if, instead
of the optimal exponent 0.73..., we only wish to obtain the (slightly less good)
exponent 3/4.

Theorem 2. Let (a0, a1, . . . aL−1) be any row of any L × L PONS matrix (L =
2m ≥ 4). Let

γj =
∑

k(modulo L)

akak+j (j = 1, 2, . . . L− 1)
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Figure 1: Average PONS periodic correlation magnitudes

denote the j-th out-of-phase periodic autocorrelation of that PONS row. Then

γj =

{
±4c′j if L/4 < j < L/2

0 otherwise

where the c′j denote the aperiodic autocorrelations of some PONS row of length
L/4.

Note that this means that three out of four of the periodic autocorrelations of
every PONS sequence are zero, including all of the autocorrelations within a
quarter length shift from 0 (see Figure 1). This generalizes to multidimensional
PONS: For n-dimensional PONS, all but one out of every 4n periodic autocorre-
lations are zero (again including all those close to the zero shift).

While the proof of this Theorem 2 is much easier than that of Theorem 1, the
two theorems put together imply the estimate

max
1≤j≤L−1

|γj| ≤ K ′ · L0.73

for the periodic autocorrelations, with the constant K ′ = K · 4−0.73.
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Theorem 3. Both for the periodic autocorrelations γj and the aperiodic auto-
correlations cj of any PONS row of length l, we have

L−1∑
j=1

|γj|2 =
1

6
L2 +O(L) and

L−1∑
j=1

|cj|2 =
1

6
L2 +O(L).

We simply mention that similar expressions for cross-correlations (both peri-
odic and aperiodic) of any two distinct rows of the same PONS matrix oscillate
between 4

3L
2 +O(L) and 2

3L
2 +O(L).

3 PONS Energy Spreading Applied to Signal Transmission

There are two inherent features of the PONS transform of a digital signal that
make it useful under certain circumstances. First, energy spreading makes the
transmitted PONS domain version of the signal appear to be white noise, thus
naturally adding security to the communications system. Second, transmitting
the PONS domain version of a signal as opposed to the original signal, and then
reconstructing the signal by taking the inverse transform on the receive end,
makes the transmission extremely robust to noise in the transmission channel.

We illustrate several of the above properties via an image processing example,
using Figure 2 as our sample digital image. Figure 3, which appears to the eye
to be white noise, is a PONS representation of Figure 2 containing exactly the
same information as the original (since the PONS transform is invertible).

Suppose there is some kind of bursty noise which substantially degrades trans-
mission of Figure 2 at isolated and unpredictable times. Figure 4 is an example
of such a situation, where roughly 60% of the pixels have been lost.

Now suppose that the PONS transform has been applied before transmission,
so that Figure 3 is transmitted in place of Figure 2. If the same exact burst error
occurs during transmission as did with Figure 3, Figure 5 is received. However,
when the inverse PONS transform is applied to Figure 5, Figure 7 results. Com-
parison of Figures 4 and 7 show a main advantage of energy spreading. Figure 2
is repeated as Figure 6 for easy comparison of the PONS reconstruction for 60
% pixel loss with the original (no pixel loss).

A live demonstration of this transmission robustness was the main feature of
the author’s Yerevan presentation. A movie illustrating this demonstration is
prometheus-us.com/PONS-papers/pons-output.mp4. Contact the author if you
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would like to arrange a web meeting to see the demonstration running in real
time.
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Figure 2: Original Image Figure 3: PONS of Original Image

Figure 4: Image after 60% Loss Figure 5: PONS after 60% Loss

Figure 6: Original Image (Again) Figure 7: Reconstructed PONS of 60% Loss9



4 Open Problems

FAP and ESG

Per Section 1, we describe the FAP and ESG. Let E(f) =
∫ 1

0 |f(e2πit)|2dt (it is
easier to put the 2π inside the argument). All functions are assumed to be square
integrable and periodic with period 1. Let Γ = [0, 1] and γ any subinterval of Γ.
|γ| = length of γ. Let Eγ(f) =

∫
γ |f(e

2πit)|2dt.
Our original definition of FAP (the set of all sequences {fn} of functions

satisfying the “Fixed Arc Property”) says that {fn} ∈ FAP if, given any γ ⊂
Γ, Eγ(fn) ∼ |γ|E(fn). Let Rn,γ(fn) =

Eγ(fn)
|γ|E(fn)

. It seems that (at least) two
definitions of FAP make sense:

Definition 1. Weak Fixed Arc Property

{fn} ∈ FAPw if, given any ϵ > 0 and any γ ⊂ Γ, ∃Nϵ,γ = N ∋ n > N ⇒
|Rn,γ(fn)− 1| < ϵ.

Definition 2. Strong Fixed Arc Property

{fn} ∈ FAPs if, given any ϵ > 0 and any δ, 0 < δ < 1, ∃Nϵ,δ = N ∋ n > N ⇒
|Rn,γ(fn)− 1| < ϵ for any γ ⊂ Γ with |γ| = δ.

It appears clear, but should be checked, that FAPs ⊂ FAPw. One problem
is to construct an example of an {fn} ∈ FAPw, {fn} ̸∈ FAPs.

Similarly, our definition of ESG (the set of all sequences {fn} of functions
having an “Energy Spreading Gauge” {δn}) can be stated in at least two ways.
In both cases {δn} is assumed to be a sequence of non negative numbers ≤ 1
approaching 0.

Definition 3. Weak Energy Spreading Gauge Property

{fn} ∈ ESGw if ∃{δn} ∋, given any {γn}, γn ⊂ Γ, with |γn| = δn, and given
any ϵ > 0, ∃Nϵ,{γn} = N ∋ n > N ⇒ |Rn,γn(fn)− 1| < ϵ.

Definition 4. Strong Energy Spreading Gauge Property

{fn} ∈ ESGs if ∃{δn} ∋, given any ϵ > 0, ∃Nϵ,δn = N ∋ n > N ⇒
|Rn,γn(fn)− 1| < ϵ for any {γn}, γn ⊂ Γ, with |γn| = δn.
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As before, ESGs ⊂ ESGw. A second problem is to construct an example of
an {fn} ∈ ESGw, {fn} ̸∈ ESGw.

“Possible” proof that FAPs ⊂ ESG:
Suppose {fn} ∈ FAPs. Let 0 < ∆1 < 1. Choose N1 = N1,∆1

∋ n >
N1 ⇒ |Rn,γ1(fn) − 1| < 1 for any γ1 ⊂ Γ with |γ1| = δ1. Let ∆2 = 1

2∆1.
Choose N2 = N2,∆2

∋ N2 ≥ N1 and n > N2 ⇒ |Rn,γ2(fn) − 1| < 1
2 for any

γ2 ⊂ Γ with |γ2| = ∆2. Continue. For each k ≥ 1 let ∆k = 1
k∆1. Choose

Nk = Nk,∆k
∋ Nk ≥ Nk−1 and n > Nk ⇒ |Rn,γk(fn)− 1| < 1

k for any γk ⊂ Γ with
|γk| = ∆k.

Define {δn} by:
{∆1∆1...∆1∆2∆2...∆2...∆k∆k...∆k...} = {δn}∞n=1 where there are N1 of the ∆1

elements, N2 −N1 of the ∆2 elements, ..., Nk −Nk−1 of the ∆k elements, and so
on.

Then given any ϵ > 0, choose k ∋ 1
k < ϵ. Then n > Nk ⇒ |Rn,γk(fn) − 1| <

1
k < ϵ for any γk ⊂ Γ with |γk| = ∆k.

QED?

The author is not satisfied with this “proof” because ∆k stays fixed as n → ∞.
So it apeears that the “arcs” are not getting smaller as n → ∞. The third
problem is to clarify this.

Possibly interesting example:
Let {αn} be any sequence of positive integers increasing to ∞. Let τn =

1
12 + 1

22 + ... + 1
α2
n
. i. e., τn =

∑αn

k=1
1
k2 . For each n, divide Γ into αn equal

subintervals, so each has length 1
αn
. For each n, now further divide each of these

αn subintervals into αn equal sub-subintervals each of length 1
α2
n
. So the kth one

starts at k
αn

+ 0
α2
n
, k
αn

+ 1
α2
n
, and so on, and ends at k

αn
+ αn

α2
n
= k+1

αn
.

For each k, define fn(x) =
1
j for k

αn
+ j

α2
n
≤ x < k

αn
+ j+1

α2
n
, 0 ≤ j < αn. i. e.,

fn(x) is periodic with period 1
αn
; it is independent of which kth sub-subinterval

we are in.
Then for any real ρ,

∫ ρ+ 1
αn

ρ |fn(e2πit)|2dt = 1
αn
τn independent of ρ! Suppose

{δn} = { 1
αn
} and γn ⊂ Γ is any sub interval of length δn, say γn = (ρn, ρn +

δn). E(fn) =
∫ 1

0 |fn(e2πit)|2dt = τn (because it = αn
1
αn
τn) and Eγn(fn) =∫ ρn+

1
αn

ρn
|fn(e2πit)|2dt = 1

αn
τn, so Rn,γn = 1

δn

Eγn(fn)
E(fn)

= 1
δn

δnτn
τn

= 1 for every n. So

{δn} is a strong ESG for {fn}.
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So, if we allow {fn} to be any sequence of L2 functions instead of restricting
them to be polynomials, we can have non-ultraflat sequences whose ESG goes to
0 arbitrarily fast.

Fourier–PONS

As shown in [2, 12, 22], there is a close relationship between Walsh functions and
Fourier analysis. Such a relationship has not yet been studied for PONS func-
tions and polynomials. When developed, it will play an important role in both
understanding the mathematics of PONS and in signal processing applications
of PONS. Specific questions include:

� Determine if there are PONS–Fourier series analogous to Walsh–Fourier se-
ries, and (if there are) analyze their properties;

� Determine if the smooth PONS construction [8] yields a PONS–Fourier
transform and, if not, determine a different construction of continuous PONS–
type functions that does;

� Develop an inverse PONS–Fourier transform;
� Determine a product–convolution duality analogous to those that occur in
Fourier analysis and Walsh–Fourier analysis;

� Develop a concept for PONS analogous to that of sequency [22] for Walsh
functions;

� Determine signal processing applications of these Fourier–PONS ideas, re-
lated in particular to orthogonal frequency-division multiplexing (OFDM).

Quadriphase PONS

It is straightforward to construct PONS–type Hadamard matrices with entries
±1, ±i. While they satisfy the basic energy spreading property and important
follow–on consequences, much work remains to determine and prove their deeper
properties and to utilize them in signal processing. Specific questions include:

� Prove that the rows can be paired off into Golay complementary pairs;
� Determine if the row polynomials are QMFs;
� Determine if they satisfy the ERS property;
� Determine the crest factors of finite sections of each row polynomial;
� Determine the auto- and cross–correlation properties of the rows;
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� Decide if there exist symmetric quadriphase PONS matrices;
� Determine approximately how many quadriphase PONS matrices exist for
each particular size;

� Determine the spectral properties of quadriphase PONS matrices;
� Develop a factorization approach to fast quadriphase PONS transform algo-
rithms;

� Develop radar and communications waveforms based upon quadriphase PONS
matrices and determine their properties;

� Determine the robustness to noise and jamming of quadriphase PONS trans-
forms;

� Determine if the rows can be employed to reduce the peak-to-average ratio
(PAPR) in OFDM communications.

Two–dimensional PONS transforms

While the basic construction of PONS transforms for signals of any dimension
has been developed and initial theorems have been proven [7], both the theory
and applications are much less mature than for the 1D case. Concentrating on
2D transforms and applications for now, specific challenges include:

� Extend the description and quantification of the PONS energy spreading
property to multidimensional signals;

� Develop the concepts of 2D Golay pairs (or sets) and QMF;
� Optimize the PONS decomposition and exact reconstruction algorithms so
as to minimize the computational requirements for image processing;

� Investigate the possibility of combining PONS with other algorithms such
as DCT or DPCM;

� Investigate whether the quality of various image compression schemes can be
measured by comparing the accuracy of their respective PONS coefficients;

� Consider the design of a parallel image searching algorithm using PONS;
� Investigate the use of PONS components for feature recognition;
� Investigate the prediction of PONS-processed frames of moving images, and
the possible determination of PONS coefficients, from other PONS data;

� Investigate PONS in a multidimensional multiresolution framework, explic-
itly analyzing the time-scale characteristics of PONS decomposition and
synthesis and establishing the pyramid relationship between PONS coeffi-
cient matrices;
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� Determine what corresponds in 2D to the ERS property.
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