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Abstract 

When searching a large database of images for ones 
that are visually similar to a particular reference images, 
it is desirable to have efficient means for making coarse 
comparisons between images. This paper describes an 
approach for eflcient image retrieval using a recently 
discovered energy-spreading Hadamard tramform 
arising from an orthogonal basis of unimodular 
sequences called the Prometheus Orthonormal Set 
(PONS). The energy-spreading properties of this PONS 
transjorm suggest that global comparison of key features 
of images can be accomplished using any subset of the 
PONS transform coefficients. 

1. . Introduction 

When searching a large database of images for ones 
that are visually similar to a particular reference image. it 
is desirable to have a highly efticient means for making 
coarse comparisons that also scales naturally to support 
liner comparisons of images which satisfy initial coarse 
screening criterion. 

Crucial information for visual recognition of many 
images includes both spatially-concentrated structures 
(e.g.. edges) and a frequency-concentrated (e.g., lowpass) 
background. Recent work by Byrnes et al. [ I ,  21 has 
yielded an orthogonal basis for complex n-dimensional 
space consisting of real unimodular (i.e.. f l )  sequences of 
length ~ 2 " '  having frequency spectra that are optimally 
flat in several mathematically precise senses. Associated 
with this basis. callcd the Promethcus Orthonormal Set 
(PONS). is a I-ladamard transform 13. 4. 51 known as the 
PONS transform. Becnusc the PONS sequences 3rc 
unimodular. their energy is spread unilorml? with respect 
10 time. Together with the spectral tlatness properties of 
the scqucnces. this implics the PONS transform provides 
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spreading of both time-concentrated and frequency- 
concentrated signal energy. The PONS transform hence 
spreads energy from both critical types of structures used 
in image recognition among all the transform coefficients, 
suggesting that information crucial to image recognition 
will be contained in each transform coefficient. 

The approach described in this paper is similar to 
other recently described work (e.g., [6,7]) in that it seeks 
to accomplish image comparison in a transform domain. 
Its departure from existing approaches is in the use of an 
cnergy-spreading transform for the purpose of ensuring 
that each transform coefficient contains essential 
information about both spatially-concentrated and 
frequency-concentrated characteristics of the image that 
play essential roles in recognition. 

2. Hadamard Transforms and The PONS 
construction 

A Hadamard matrix H, of order tt  is an nxn matrix 
containing only the values + I  and -1 and with the 
property that inner product of any two distinct rows is 
zero. Thus 

where In denotes the nxn identity matrix. The rows o f a  
I-iadamard matrix define a collection of n orthogonal 
discrete-time signals. each of length n. Moreover, each of 
these signals has energy n. so the rows of a Hadamard 
matrix are an basis for that is orthonormal up to the 
factor n',? and the linear transformation x + HJ is 
unitary up  to  this same constant factor. 

The L-translorm of each of the rows of a Hadamard 

matrix is a polynomial of degree 11-1 in z-' whose values 
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on the unit  circle constitute the discrete-time Fourier 
transform (DTFT) frequency spectrum of the signal. 

A construction due to H.S. Shapiro (see [?I) defines a 
pair of polynomials PJz) and e,,(:) of degree n-J with 

~2~ having f l  coefficients and which are optimally tlat 
on the unit circle: i.e.. maxlfn(eio)l and maxlQn(eio)I 
both achieve a sharp lower bound that applies to all 
unimodular polynomials of degree n-I. The construction 
is inductive with 

and, for m 2 0, 

PONS is a full basis of +1 sequences whose 
frequency spectra satisfj, the same flatness condition as 
the sequences arising from Shapiro's construction. 
Bymes' construction of PONS [2] proceeds using the 
inductive method based on the concatenation rule 
depicted by 

To illustrate the construction, the 2 x 2  PONS matrix is 
given by 

A 4x4 PONS matrix is constructed using the first row of 
PI as A, and the second row of P2 as B in the 
concatenation rule. Similarly, 

I I - 1  

p , = /  I - I  I -; ;] 
I - I  - I  - I  

PS is constructed using the first two rows of P4 and the 
concatenation rule. Thus 

; I I I - I  I I - I  I 
j I I I - I  - I  . - I  I - I  

1 1 - 1  I 1 I 1 - 1  
I I - I  1 - 1  . - I  - I  1 
1 - 1  I 1 - 1  I I I 
I - I  1 I I - - I  - I  - 1  
1 - I  - 1  - 1  I - - I  1 I 
I - 1  - I  - 1  - I  I - I  -1 

P, = 

The first two rows of Pa and the coricatenation rule ( 5 )  
yield the first four rows of f j6, and so on. 

Before proceeding to describe the image retrieval 
application of the PONS transform, a comment about the 
role of Hadamard matrices and their associated linear 
transforms in signal processing are appropriate. First, the 
use of Hadamard techniques in applications has a well 
established history [3,4.5] and. in particular, the Walsh 
transform is a special case that plays important roles in 
signal processing and communications. The Walsh 
sequences, however, do not enjoy the same spectral 
flatness properties as the PONS sequences; the Walsh 
transform will not generally spread temporally localized 
energy as evenly among transform coefficients as the 
PONS transform will. Several alternative PONS 
constructions are known to Byrnes anti his collaborators. 
But, to the authors' knowledge, none of these are yet 
published. 

3. Approach 

For the purposes of this work, issues of scale, rotation, 
and shift alignment are neglected in fiwor of developing 
the fundamental approach for efficient image matching. 
Under the assumption that two monochrome images land 
J of the same size have both been placeld in some standard 
alignment in scale, rotation. and shift. they can be 
compared by a correlation coefficient 

In this expression, (e,.) donates inn&r,product and 11-11 
denotes norm, both in the usual Euclidean sense. The 
Schwarz inequality implies -1 I y 5 1 with y =  1 if and 
only if /=a/ for some positive ccinstant a Hence 
computation of y provides a means fix comparing the 
similarity of images in which (a) y =  1 indicates a perfect 
match up to an intensity scaling and (b) values of ynear 
unity indicate better matches than smaller values. 

Since the rows of a nxn iiadamarcl matrix (and the 
PONS transform matrix I' in particular) are orthogonal 
and all have norm n'". Parseval's relation implies 
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For example, the image correlation cnn be carried out in 
the transform domain. 

In the proposed.approach. imagcs of standard size arc 
stored in the database in the form of PONS transform 
coefficients of a block decomposition. For instance, a 
256x256-pixel image might be decomposed into 16x16 
blocks, each of size 16x16 pixels. and the 256-point 
PONS transform of each block stored i n  the database. 
Note that multiplication by a real Hadamard matrix (or its 
inverse) requires only adds and subtracts (no multiplies) 
so that formatting images for storage in this form can be 
accomplished with high computational efficiency. 

can be 
computed in the transform domain. But this provides no 
computational advantage over computing i t  from the 
original image data. The viability of this idea is illustrated 
in the following section of this paper. 

As already noted. the comparison statistic 

4. Reduced Image Representation By PONS 
Coefficients 

To illustrate how single PONS transform coefficients 
tend to capture both spatially concentrated and frequency 
concentrated information important to image recognition, 
this section presents an example of representing an image 
using a single randomly chosen PONS coefficient from 
each 16x 16-pixel block of an image. The 256x256-pixel 
monochrome image shown in figure 1 was partitioned 
into 16x16 blocks and both the discrete cosine transform 
(DCT) and PONS transform of each block were 
computed. A reconstruction of the image using only the 
DC coefticient from the DCT in each block is shown 
together with two reconstructions each using only a single 
rindomly chosen PONS coefficient from each block. 
Note that the recognizablity of visual features is 
approximately equal in the PONS and DC 
rcconstructions, though the DC coefficients from each 
block are the “optimal” choice for reconstruction from 
DCT cocfticients in the sense that they contain the most 
signal energy. In fact, though not readily visible in  this 
example, the mathematics suggests that the presence of 
edges and other high-frequency features should be better 
captured in the PONS ctx3‘iicients than the DC values. 

- _ - - -  _ - - - -  
Figure 1: (Upper left) Original image. (Upper right) 
image reconstructed using only the DC coeffiaent 
from the DCT in each block. (Lower left) Image 
reconstructed using only a single randomly chosen 
PONS coefficient from each block. (Lower right) 
image reconstructed using a different single 
randomlychosen PONS coefficient from each block. 

5. Experimental Results 

To illustrate the proposed approach to image 
retrieval, experiments were performed using a single 
uncategorized database containing 450 images each of 
size 256x256 pixels. The images were originally 256 
gray-scale level 400 Tiff images, but they were stored in 
this database in the form of PONS transform coefficients 
from a 16x I6 block decomposition. Computations were 
done in MATLAB. 

A query image was transformed into PONS 
coefficients in the same manner and the database was 
searched by computing the correlation coefficient defined 
in equation (6) between the query image and each image 
in the database. However, instead of using all transform 
coefficients from each image in computing the 
correlation, only one coefficient from each block was 
used (i.e., the correlations were of size 256 rather than 
65.536). 

Examples of query images together with their best 
matches trom the database are shown in tigures 2 and 3. 
Figure 2 shows the query image (correlation value 
1 .0000) and eight other images with correlation 
coefficients ( y )  of 0.9756. 0.9733, 0.9731, 0.9721, 
0.9707, 0.9683.0.962 I and 0.9587, respectively. Note the 
visual similarity of these images with the query image 
compared to. say. the images in figure 3 - which were 
;iIso in the databasc. 
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Figure 2: Query image (upper left) and  images 
retrieved from a reduced-order correlation of PONS 
coefficients. 

Similar results are shown in figure 3, where a query 
image and five retrieved images are with correlation 
values of 0.9917, 0.9915, 0.9898, 0.9883 and 0.9880, 
respectively. 

mol2 Too14 Too18 

rctrie\,d ( i t ‘  imagcs similar t o  ;I quer> image from ;L 

database. l‘his small I‘eaturc vector allows efficient 
coarse comparison of  images by correlation in a 
computationally ctficient manner. Moreover. the 
properties of the PONS transform irnply that both low- 
frequency and high-frequency information that is 
important in visual recognition of images will be 
represented in the feature vectors, and hence relected in 
the correlation comparison of images. 

While there are obvious drawbacks to storing image 
data in the form of transform coefficients, we note that 
both the PONS transform and its inverse can be computed 
without multiplies. Thus a front-end to the such a 
database could be implemented with high computational 
efficiency. 

In future work. we plan to try this method for 
retrieval of medical images. 
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